题目内容
已知数列{an},{bn}满足a1=1,且an、an+1是函数f(x)=x2-bnx+2n的两个零点,则b10=________.
64
【解析】依题意有anan+1=2n,所以an+1an+2=2n+1,两式相除得=2,所以a1,a3,a5,…成等比数列,a2,a4,a6,…也成等比数列,而a1=1,a2=2,所以a10=2×24=32,a11=1×25=32,又因为an+an+1=bn,所以b10=a10+a11=64.
练习册系列答案
相关题目