ÌâÄ¿ÄÚÈÝ
¶ÔÓÚ¶¨ÒåÔÚRÉϵĺ¯Êýf(x)ÓÐÒÔÏÂÎå¸öÃüÌ⣺
¢ÙÈôy£½f(x)ÊÇÆ溯Êý£¬Ôòy£½f(x£1)µÄͼÏó¹ØÓÚA(1,0)¶Ô³Æ£»
¢ÚÈô¶ÔÓÚÈÎÒâx¡ÊR£¬ÓÐf(x£1)£½f(x£«1)£¬Ôòf(x)¹ØÓÚÖ±Ïßx£½1¶Ô³Æ£»
¢Ûº¯Êýy£½f(x£«1)Óëy£½f(1£x)µÄͼÏó¹ØÓÚÖ±Ïßx£½1¶Ô³Æ£»
¢ÜÈç¹ûº¯Êýy£½f(x)Âú×ãf(x£«1)£½f(1£x)£¬f(x£«3)£½f(3£x)£¬ÄÇô¸Ãº¯ÊýÒÔ4ΪÖÜÆÚ£®
ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅΪ________£®
¢Ù¢Ü
¡¾½âÎö¡¿¢ÙÆ溯ÊýͼÏóÓÒÒÆÒ»¸öµ¥Î»£¬¶Ô³ÆÖÐÐıäΪ(1,0)£»¢ÚÈô¶ÔÓÚÈÎÒâx¡ÊR£¬ÓÐf(x£1)£½f(x£«1)£¬Ôòf(x)£½f(x£«2)£»¢ÛÁ½º¯ÊýͼÏó¹ØÓÚÖ±Ïßx£½0¶Ô³Æ£»¢Üf(x£«1)£½f(1£x)£½f[(£2£x)£«3]£½f[3£(£2£x)]£½f(5£«x)£¬¡àf(x)£½f(x£«4)£¬¸Ãº¯ÊýÒÔ4ΪÖÜÆÚ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿