题目内容
【题目】已知函数f(x)=(x+a)ex,其中e是自然对数的底数,a∈R.
(1)求函数f(x)的单调区间;
(2)当a<1时,试确定函数g(x)=f(x-a)-x2的零点个数,并说明理由.
【答案】(1)单调递减区间为(-∞,-a-1),单调递增区间为(-a-1,+∞).(2)见解析
【解析】试题分析:(1)对函数求导,研究导函数的正负,根据到函数的正负得到原函数的单调性;(2)将函数g(x)=f(x-a)-x2的零点个数问题转化为该函数和x轴的交点个数问题,研究这个函数的单调性和图像,找到它和轴的交点个数。
解析:
(1)因为f(x)=(x+a)ex,x∈R,所以f′(x)=(x+a+1)ex.
令f′(x)=0,得x=-a-1.
当x变化时,f(x)和f′(x)的变化情况如下:
x | (-∞,-a-1) | -a-1 | (-a-1,+∞) |
f′(x) | - | 0 | + |
f(x) | ? | 极小值 | ? |
故f(x)的单调递减区间为(-∞,-a-1),单调递增区间为(-a-1,+∞).
(2)结论:函数g(x)有且仅有一个零点.
理由如下:
由g(x)=f(x-a)-x2=0,得方程xex-a=x2,
显然x=0为此方程的一个实数解,
所以x=0是函数g(x)的一个零点.
当x≠0时,方程可化简为ex-a=x.
设函数F(x)=ex-a-x,则F′(x)=ex-a-1,令F′(x)=0,得x=a.
当x变化时,F(x)和F′(x)的变化情况如下:
x | (-∞,a) | a | (a,+∞) |
F′(x) | - | 0 | + |
F(x) | ? | 极小值 | ? |
即F(x)的单调递增区间为(a,+∞),单调递减区间为(-∞,a).
所以F(x)的最小值F(x)min=F(a)=1-a.因为a<1,
所以F(x)min=F(a)=1-a>0,
所以对于任意x∈R,F(x)>0,
因此方程ex-a=x无实数解.
所以当x≠0时,函数g(x)不存在零点.
综上,函数g(x)有且仅有一个零点.
【题目】已知f是有序数对集合M={(x,y)|x∈N*,y∈N*}上的一个映射,正整数数对(x,y)在映射f下的像为实数z,记作f(x,y)=z.对于任意的正整数m,n(m>n),映射f由下表给出:
(x,y) | (n,n) | (m,n) | (n,m) |
f(x,y) | n | m-n | m+n |
则f(3,5)=________,使不等式f(2x,x)≤4成立的x的集合是__________.