ÌâÄ¿ÄÚÈÝ
¶ÔÓÚº¯Êýf£¨x£©£¬g£¨x£©£¬h£¨x£©£¬Èç¹û´æÔÚʵÊýa£¬b£¬Ê¹µÃh£¨x£©=af£¨x£©+bg£¨x£©£¬ÄÇô³Æh£¨x£©Îªf£¨x£©£¬g£¨x£©µÄÏßÐÔÉú³Éº¯Êý£®
£¨1£©¸ø³öÈçÏÂÁ½×麯Êý£¬ÊÔÅжÏh£¨x£©ÊÇ·ñ·Ö±ðΪf£¨x£©£¬g£¨x£©µÄÏßÐÔÉú³Éº¯Êý£¬²¢ËµÃ÷ÀíÓÉ£®
µÚÒ»×飺£»
µÚ¶þ×飺f£¨x£©=x2-x£¬g£¨x£©=x2+x+1£¬h£¨x£©=x2-x+1£®
£¨2£©ÒÑÖªf£¨x£©=log2x£¬g£¨x£©=log0.5xµÄÏßÐÔÉú³Éº¯ÊýΪh£¨x£©£¬ÆäÖÐa=2£¬b=1£®Èô²»µÈʽ3h2£¨x£©+2h£¨x£©+t£¼0ÔÚx¡Ê[2£¬4]ÉÏÓн⣬ÇóʵÊýtµÄÈ¡Öµ·¶Î§£»
£¨3£©ÒÑÖªµÄÏßÐÔÉú³Éº¯Êýh£¨x£©£¬ÆäÖÐa£¾0£¬b£¾0£®Èôh£¨x£©¡Ýb¶Ôa¡Ê[1£¬2]ºã³ÉÁ¢£¬ÇóʵÊýbµÄÈ¡Öµ·¶Î§£®
½â£º£¨1£©µÚÒ»×飺£»
Èôh£¨x£©Îªf£¨x£©£¬g£¨x£©µÄÏßÐÔÉú³Éº¯Êý£¬ÔòÓУº
´æÔÚʵÊýa£¬b£¬Ê¹µÃ=asinx+bcosx£¬
ÓÉÓÚ¹ÊÉÏʽ³ÉÁ¢£¬
¼´h£¨x£©Îªf£¨x£©£¬g£¨x£©µÄÏßÐÔÉú³Éº¯Êý£®
µÚ¶þ×飺f£¨x£©=x2-x£¬g£¨x£©=x2+x+1£¬h£¨x£©=x2-x+1£®
Èôh£¨x£©Îªf£¨x£©£¬g£¨x£©µÄÏßÐÔÉú³Éº¯Êý£¬ÔòÓУº
´æÔÚʵÊýa£¬b£¬Ê¹µÃx2-x+1=a£¨x2-x£©+b£¨x2+x+1£©£¬
Ôò£ºx2-x+1=£¨a+b£©x2-£¨a-b£©x+b£¬
¡àÕâÊDz»¿ÉÄܳÉÁ¢µÄ£¬
¼´h£¨x£©²»Îªf£¨x£©£¬g£¨x£©µÄÏßÐÔÉú³Éº¯Êý£®
£¨2£©ÒÑÖªf£¨x£©=log2x£¬g£¨x£©=log0.5xµÄÏßÐÔÉú³Éº¯ÊýΪh£¨x£©£¬ÆäÖÐa=2£¬b=1£®
Ôò£ºh£¨x£©=2log2x+log0.5x=log2x£¬µ±x¡Ê[2£¬4]ʱ£¬1¡Üh£¨x£©¡Ü2£¬
Èô²»µÈʽ3h2£¨x£©+2h£¨x£©+t£¼0ÔÚx¡Ê[2£¬4]ÉÏÓн⣬
¼´-t£¾3h2£¨x£©+2h£¨x£©£¬¼´ÒªÇó-t£¾3h2£¨x£©+2h£¨x£©×îСֵ¼´¿É£¬
-t£¾5£¬¡àt£¼-5
¡àʵÊýtµÄÈ¡Öµ·¶Î§t£¼-5£®
£¨3£©ÓÉÒÑÖª£¬µÄÏßÐÔÉú³Éº¯Êýh£¨x£©£¬ÆäÖÐa£¾0£¬b£¾0£®
µÃ£ºh£¨x£©=ax+£¬
Èôh£¨x£©¡Ýb¶Ôa¡Ê[1£¬2]ºã³ÉÁ¢£¬
¼´ax+¡Ýb¶Ôa¡Ê[1£¬2]ºã³ÉÁ¢£¬
bҪСÓÚµÈÓÚax+µÄ×îСֵ¼´¿É£¬
¼´b¡Ü2£¬¼´£¬
ÓÉÓÚa¡Ê[1£¬2]£¬¡à£¬µÃ³ö£º0£¼b¡Ü4
¡àʵÊýbµÄÈ¡Öµ·¶Î§ÊÇ0£¼b¡Ü4£®
·ÖÎö£º£¨1£©¶ÔÓÚµÚÒ»×飺ÀûÓúͽǹ«Ê½¼´¿ÉµÃµ½£¬¼´h£¨x£©Îªf£¨x£©£¬g£¨x£©µÄÏßÐÔÉú³Éº¯Êý£®
µÚ¶þ×飺f£¨x£©=x2-x£¬g£¨x£©=x2+x+1£¬h£¨x£©=x2-x+1£®Èôh£¨x£©Îªf£¨x£©£¬g£¨x£©µÄÏßÐÔÉú³Éº¯Êý£¬ÔòÓУº
´æÔÚʵÊýa£¬b£¬Ê¹µÃx2-x+1=a£¨x2-x£©+b£¨x2+x+1£©£¬ÀûÓùØÓÚa£¬bµÄ·½³Ì×éÎ޽⼴¿ÉµÃ³öh£¨x£©²»Îªf£¨x£©£¬g£¨x£©µÄÏßÐÔÉú³Éº¯Êý£®
£¨2£©Ïȵõ½h£¨x£©=2log2x+log0.5x=log2x£¬µ±x¡Ê[2£¬4]ʱ£¬1¡Üh£¨x£©¡Ü2£¬Èô²»µÈʽ3h2£¨x£©+2h£¨x£©+t£¼0ÔÚx¡Ê[2£¬4]ÉÏÓн⣬ÀûÓû»ÔªË¼Ïë½áºÏ¶þ´Îº¯ÊýµÄÐÔÖʼ´¿ÉÇóµÃʵÊýtµÄÈ¡Öµ·¶Î§£»
£¨3£©ÓÉÒÑÖª£¬µÄÏßÐÔÉú³Éº¯Êýh£¨x£©£¬ÆäÖÐa£¾0£¬b£¾0£¬¿ÉµÃh£¨x£©=ax+£¬ÔÙ½áºÏº¯Êýh£¨x£©µÄÐÔÖÊÀûÓúã³ÉÁ¢ÎÊÌâµÄ½â·¨¼´¿ÉÇóµÃʵÊýbµÄÈ¡Öµ·¶Î§£®
µãÆÀ£º±¾Ð¡ÌâÖ÷Òª¿¼²éº¯Êý½âÎöʽµÄÇó½â¼°³£Ó÷½·¨¡¢º¯Êýºã³ÉÁ¢ÎÊÌâ¡¢Èý½Ç±ä»»¡¢²»µÈʽµÈ»ù´¡ÖªÊ¶£¬¿¼²éÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ï룬ÊôÓÚ»ù´¡Ì⣮
Èôh£¨x£©Îªf£¨x£©£¬g£¨x£©µÄÏßÐÔÉú³Éº¯Êý£¬ÔòÓУº
´æÔÚʵÊýa£¬b£¬Ê¹µÃ=asinx+bcosx£¬
ÓÉÓÚ¹ÊÉÏʽ³ÉÁ¢£¬
¼´h£¨x£©Îªf£¨x£©£¬g£¨x£©µÄÏßÐÔÉú³Éº¯Êý£®
µÚ¶þ×飺f£¨x£©=x2-x£¬g£¨x£©=x2+x+1£¬h£¨x£©=x2-x+1£®
Èôh£¨x£©Îªf£¨x£©£¬g£¨x£©µÄÏßÐÔÉú³Éº¯Êý£¬ÔòÓУº
´æÔÚʵÊýa£¬b£¬Ê¹µÃx2-x+1=a£¨x2-x£©+b£¨x2+x+1£©£¬
Ôò£ºx2-x+1=£¨a+b£©x2-£¨a-b£©x+b£¬
¡àÕâÊDz»¿ÉÄܳÉÁ¢µÄ£¬
¼´h£¨x£©²»Îªf£¨x£©£¬g£¨x£©µÄÏßÐÔÉú³Éº¯Êý£®
£¨2£©ÒÑÖªf£¨x£©=log2x£¬g£¨x£©=log0.5xµÄÏßÐÔÉú³Éº¯ÊýΪh£¨x£©£¬ÆäÖÐa=2£¬b=1£®
Ôò£ºh£¨x£©=2log2x+log0.5x=log2x£¬µ±x¡Ê[2£¬4]ʱ£¬1¡Üh£¨x£©¡Ü2£¬
Èô²»µÈʽ3h2£¨x£©+2h£¨x£©+t£¼0ÔÚx¡Ê[2£¬4]ÉÏÓн⣬
¼´-t£¾3h2£¨x£©+2h£¨x£©£¬¼´ÒªÇó-t£¾3h2£¨x£©+2h£¨x£©×îСֵ¼´¿É£¬
-t£¾5£¬¡àt£¼-5
¡àʵÊýtµÄÈ¡Öµ·¶Î§t£¼-5£®
£¨3£©ÓÉÒÑÖª£¬µÄÏßÐÔÉú³Éº¯Êýh£¨x£©£¬ÆäÖÐa£¾0£¬b£¾0£®
µÃ£ºh£¨x£©=ax+£¬
Èôh£¨x£©¡Ýb¶Ôa¡Ê[1£¬2]ºã³ÉÁ¢£¬
¼´ax+¡Ýb¶Ôa¡Ê[1£¬2]ºã³ÉÁ¢£¬
bҪСÓÚµÈÓÚax+µÄ×îСֵ¼´¿É£¬
¼´b¡Ü2£¬¼´£¬
ÓÉÓÚa¡Ê[1£¬2]£¬¡à£¬µÃ³ö£º0£¼b¡Ü4
¡àʵÊýbµÄÈ¡Öµ·¶Î§ÊÇ0£¼b¡Ü4£®
·ÖÎö£º£¨1£©¶ÔÓÚµÚÒ»×飺ÀûÓúͽǹ«Ê½¼´¿ÉµÃµ½£¬¼´h£¨x£©Îªf£¨x£©£¬g£¨x£©µÄÏßÐÔÉú³Éº¯Êý£®
µÚ¶þ×飺f£¨x£©=x2-x£¬g£¨x£©=x2+x+1£¬h£¨x£©=x2-x+1£®Èôh£¨x£©Îªf£¨x£©£¬g£¨x£©µÄÏßÐÔÉú³Éº¯Êý£¬ÔòÓУº
´æÔÚʵÊýa£¬b£¬Ê¹µÃx2-x+1=a£¨x2-x£©+b£¨x2+x+1£©£¬ÀûÓùØÓÚa£¬bµÄ·½³Ì×éÎ޽⼴¿ÉµÃ³öh£¨x£©²»Îªf£¨x£©£¬g£¨x£©µÄÏßÐÔÉú³Éº¯Êý£®
£¨2£©Ïȵõ½h£¨x£©=2log2x+log0.5x=log2x£¬µ±x¡Ê[2£¬4]ʱ£¬1¡Üh£¨x£©¡Ü2£¬Èô²»µÈʽ3h2£¨x£©+2h£¨x£©+t£¼0ÔÚx¡Ê[2£¬4]ÉÏÓн⣬ÀûÓû»ÔªË¼Ïë½áºÏ¶þ´Îº¯ÊýµÄÐÔÖʼ´¿ÉÇóµÃʵÊýtµÄÈ¡Öµ·¶Î§£»
£¨3£©ÓÉÒÑÖª£¬µÄÏßÐÔÉú³Éº¯Êýh£¨x£©£¬ÆäÖÐa£¾0£¬b£¾0£¬¿ÉµÃh£¨x£©=ax+£¬ÔÙ½áºÏº¯Êýh£¨x£©µÄÐÔÖÊÀûÓúã³ÉÁ¢ÎÊÌâµÄ½â·¨¼´¿ÉÇóµÃʵÊýbµÄÈ¡Öµ·¶Î§£®
µãÆÀ£º±¾Ð¡ÌâÖ÷Òª¿¼²éº¯Êý½âÎöʽµÄÇó½â¼°³£Ó÷½·¨¡¢º¯Êýºã³ÉÁ¢ÎÊÌâ¡¢Èý½Ç±ä»»¡¢²»µÈʽµÈ»ù´¡ÖªÊ¶£¬¿¼²éÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ï룬ÊôÓÚ»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿