题目内容

【题目】;给定函数① ,② ,③y=|x﹣1|,④y=2x+1 , 其中在区间(0,1)上单调递减的函数序号是(
A.①②
B.②③
C.③④
D.①④

【答案】B
【解析】解:①是幂函数,其在(0,+∞)上即第一象限内为增函数,故此项不符合要求;
②中的函数是由函数 向左平移1个单位长度得到的,因为原函数在(0,+∞)内为减函数,故此项符合要求;
③中的函数图象是由函数y=x﹣1的图象保留x轴上方,下方图象翻折到x轴上方而得到的,故由其图象可知该项符合要求;
④中的函数图象为指数函数,因其底数大于1,故其在R上单调递增,不合题意.
故选B.
本题所给的四个函数分别是幂函数型,对数函数型,指数函数型,含绝对值函数型,在解答时需要熟悉这些函数类型的图象和性质;① 为增函数,② 为定义域上的减函数,③y=|x﹣1|有两个单调区间,一增区间一个减区间,④y=2x+1为增函数.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网