题目内容
某少数民族的刺绣有着悠久的历史,下图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含个小正方形.
(Ⅰ)求出;
(Ⅱ)利用合情推理的“归纳推理思想”归纳出与的关系式,
(Ⅲ)根据你得到的关系式求的表达式.
(Ⅰ)41(Ⅱ)f(n+1)-f(n)=4n(Ⅲ)f(n)=2n2-2n+1
解析试题分析:(Ⅰ)先分别观察给出正方体的个数为:1,1+4,1+4+8, 从而得出f(5);
(Ⅱ)将(Ⅰ)总结一般性的规律:f(n+1)与f(n)的关系式,
(Ⅲ)再从总结出来的一般性的规律转化为特殊的数列再求解即得.
试题解析:(Ⅰ)f(1)=1,f(2)=5,f(3)=13,f(4)=25, 2分
f(5)=25+4×4=41. 4分
(Ⅱ)f(2)-f(1)=4=4×1. f(3)-f(2)=8=4×2,
f(4)-f(3)=12=4×3, f(5)-f(4)=16=4×4, 6分
由上式规律得出f(n+1)-f(n)=4n. 8分
(Ⅲ)f(2)-f(1)=4×1, f(3)-f(2)=4×2, f(4)-f(3)=4×3, f(n-1)-f(n-2)=4·(n-2), f(n)-f(n-1)=4·(n-1) 10分
f(n)-f(1)="4[1+2+" +(n-2)+(n-1)]=2(n-1)·n,
f(n)=2n2-2n+1 12分
考点:归纳推理;进行简单的合情推理.
练习册系列答案
相关题目