题目内容
(12分)已知各项均为正数的数列
前
项和为
,首项为
,且
成等差数列.
(1)求数列
的通项公式;
(2)若
,设
,求数列
的前
项和
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162704575276.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162704591192.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162704606222.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162704622206.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162704638638.gif)
(1)求数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162704575276.gif)
(2)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162704684589.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162704700345.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162704716271.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162704591192.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162704747214.gif)
(1)an=a1·2n-1=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162704762225.gif)
(2)Tn=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162704778398.gif)
解(1)由题意知2an=Sn+
,an>0
当n=1时,2a1=a1+
∴a1=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162704762225.gif)
当n≥2时,
=2an-
,Sn-1=2an-1-![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162704762225.gif)
两式相减得an=2an-2an-1
整理得:
=2 ………………………………………………………4分
∴数列{an}是以
为首项,2为公比的等比数列.
an=a1·2n-1=
×2n-1=2n-2 ………………………………………………5分
(2)an2=
=22n-4 ∴bn=4-2n …………………6分
Cn=
=
=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162705433488.gif)
Tn=
…
①
Tn=
…+
②
①—②得
Tn=4-8
……………………9分
=4-8·
=4-4![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162706182676.gif)
=
……………11分
∴Tn=
…………………………………………………………12分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162704762225.gif)
当n=1时,2a1=a1+
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162704762225.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162704762225.gif)
当n≥2时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162704981220.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162704762225.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162704762225.gif)
两式相减得an=2an-2an-1
整理得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162705043286.gif)
∴数列{an}是以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162704762225.gif)
an=a1·2n-1=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162704762225.gif)
(2)an2=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162705184321.gif)
Cn=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162705262379.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162705277438.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162705433488.gif)
Tn=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162705730473.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162705886680.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162704762225.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162705917375.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162705948661.gif)
①—②得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162704762225.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162705979830.gif)
=4-8·
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162706010858.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162706182676.gif)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162706198386.gif)
∴Tn=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162704778398.gif)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目