题目内容
等差数列{an}前n项和为Sn,已知对任意的n∈N*,点(n,Sn)在二次函数f(x)=x2+c图象上.
(1)求c,an;
(2)若kn=
,求数列{kn}前n项和Tn .
(1)求c,an;
(2)若kn=
an | 2n |
分析:(1)由点(n,Sn)在二次函数f(x)=x2+c的图象上,知Sn=n2+c,再由an是等差数列,能求出c,an.
(2)由(1)知kn=
,故Tn=
+
+
+…+
+
,利用错位相减法能够求出Tn.
(2)由(1)知kn=
2n-1 |
2n |
1 |
2 |
3 |
22 |
5 |
23 |
2n-3 |
2n-1 |
2n-1 |
2n |
解答:解:(1)点(n,Sn)在二次函数f(x)=x2+c的图象上,
∴Sn=n2+c,
a1=S1=1+c,
a2=S2-S1=(4+c)-(1+c)=3,
a3=S3-S2=5,
又∵an是等差数列,
∴6+c=6,c=0,
d=3-1=2,an=1+2(n-1)=2n-1.
(2)∵an=2n-1,kn=
,
∴kn=
,
∴Tn=
+
+
+…+
+
,…①
Tn=
+
+
+…+
+
,…②
①-②,得
Tn=
+2(
+
+
+…+
)-
=
+2×
-
=
-
.
∴Tn=3-
.
∴Sn=n2+c,
a1=S1=1+c,
a2=S2-S1=(4+c)-(1+c)=3,
a3=S3-S2=5,
又∵an是等差数列,
∴6+c=6,c=0,
d=3-1=2,an=1+2(n-1)=2n-1.
(2)∵an=2n-1,kn=
an |
2n |
∴kn=
2n-1 |
2n |
∴Tn=
1 |
2 |
3 |
22 |
5 |
23 |
2n-3 |
2n-1 |
2n-1 |
2n |
1 |
2 |
1 |
22 |
3 |
23 |
5 |
24 |
2n-3 |
2n |
2n-1 |
2n+1 |
①-②,得
1 |
2 |
1 |
2 |
1 |
22 |
1 |
23 |
1 |
23 |
1 |
2n |
2n-1 |
2n+1 |
=
1 |
2 |
| ||||
1-
|
2n-1 |
2n+1 |
=
3 |
2 |
2n+3 |
2n+1 |
∴Tn=3-
2n+3 |
2n |
点评:本题考查数列的通项公式和前n项和的求法,解题时要认真审题,仔细解答,注意错位相减法和合理运用.
练习册系列答案
相关题目