题目内容
数列
的各项均为正数,
为其前
项和,对于任意
,总有
成等差数列.
(1)求数列
的通项公式;
(2)设数列
的前
项和为
,且
,求证:对任意实数
是常数,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231654556195376.jpg)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231654556504514.jpg)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165455229381.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165455245220.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165455260192.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165455291380.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165455401435.gif)
(1)求数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165455229381.gif)
(2)设数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165455525385.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165455260192.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165455557211.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165455588508.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165455603351.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231654556195376.jpg)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231654556504514.jpg)
(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165455666520.gif)
(2)证明略
(3)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165455681862.jpg)
解:由已知:对于
,总有
成立………(1)
(2) ………………………………2分
(1)—(2)得![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165455775601.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165455791697.gif)
均为正数, ![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165455900548.gif)
数列
是公差为1的等差数列 ………………………………3分
又
时,
,解得![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165455978244.gif)
……………………………………………………4分
(2)证明:
对任意实数
和任意正整数
,总有
……6分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231654561181106.gif)
………………8分
(3)解:由已知![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165456165552.gif)
,
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165456212566.gif)
易得![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165456227410.gif)
猜想
时,
是递减数列 …………………………………………10分
令
,则![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165456337835.gif)
当
时,
,则
,即![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165456430343.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165455915128.gif)
在
内为单调递减函数,
由
知![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165456555640.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231654565867976.jpg)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165455291380.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165455728472.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165455744660.gif)
(1)—(2)得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165455775601.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165455791697.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165455806394.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165455900548.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165455915128.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165455229381.gif)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165455962232.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165455978464.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165455978244.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165456009537.gif)
(2)证明:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165456040183.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165456056434.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165455260192.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165456087621.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231654561181106.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231654561491127.gif)
(3)解:由已知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165456165552.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165456181559.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165456196644.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165456212566.gif)
易得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165456227410.gif)
猜想
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165456243244.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165456259270.gif)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165456321413.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165456337835.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165455915128.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165456368237.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165456399277.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165456415325.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165456430343.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165455915128.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165456477270.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165456524417.gif)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165456524421.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165456555640.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231654565867976.jpg)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目