题目内容
等差数列{ an}中a3=7,a1+a2+a3=12,记Sn为{an}的前n项和,令bn=anan+1,数列{
}的前n项和为Tn.
(1)求an和Sn;
(2)求证:Tn<
;
(3)是否存在正整数m,n,且1<m<n,使得T1,Tm,Tn成等比数列?若存在,求出m,n的值,若不存在,说明理由.
1 |
bn |
(1)求an和Sn;
(2)求证:Tn<
1 |
3 |
(3)是否存在正整数m,n,且1<m<n,使得T1,Tm,Tn成等比数列?若存在,求出m,n的值,若不存在,说明理由.
分析:(1)设数列{an}的公差为d,由a3=a1+2d=7,a1+a2+a3=3a1+3d=12,解得a1=1,d=3,由此能求出an和Sn.
(2)由bn=anan+1=(3n-2)(3n+1),知
=
=
(
-
),由此能够证明Tn<
.
(3)由(2)知,Tn=
,故T1=
,Tm=
,Tn=
,由T1,Tm,Tn成等比数列,能够推导出存在正整数m=2,n=16,且1<m<n,使得T1,Tm,Tn成等比数列.
(2)由bn=anan+1=(3n-2)(3n+1),知
1 |
bn |
1 |
(3n-2)(3n+1) |
1 |
3 |
1 |
3n-2 |
1 |
3n+1 |
1 |
3 |
(3)由(2)知,Tn=
n |
3n+1 |
1 |
4 |
m |
3m+1 |
n |
3n+1 |
解答:解:(1)设数列{an}的公差为d,
由a3=a1+2d=7,a1+a2+a3=3a1+3d=12,
解得a1=1,d=3,
∴an=3n-2,
Sn=n+
×3=
.
(2)∵bn=anan+1=(3n-2)(3n+1),
∴
=
=
(
-
),
Tn=
(1-
+
-
+
-
+…+
-
+
-
)
=
(1-
)<
.
(3)由(2)知,Tn=
,∴T1=
,Tm=
,Tn=
,
∵T1,Tm,Tn成等比数列,
∴(
)2=
×
,
即
=
,
当m=1时,7=
,n=1,不合题意;
当m=2时,
=
,n=16,符合题意;
当m=3时,
=
,n无正整数解;
当m=4时,
=
,n无正整数解;
当m=5时,
=
,n无正整数解;
当m=6时,
=
,n无正整数解;
当m≥7时,m2-6m-1=(m-3)2-10>0,
则
<1,而
=3+
>3,
所以,此时不存在正整数m,n,且7<m<n,使得T1,Tm,Tn成等比数列.
综上,存在正整数m=2,n=16,且1<m<n,使得T1,Tm,Tn成等比数列.
由a3=a1+2d=7,a1+a2+a3=3a1+3d=12,
解得a1=1,d=3,
∴an=3n-2,
Sn=n+
n(n-1) |
2 |
3n2-n |
2 |
(2)∵bn=anan+1=(3n-2)(3n+1),
∴
1 |
bn |
1 |
(3n-2)(3n+1) |
1 |
3 |
1 |
3n-2 |
1 |
3n+1 |
Tn=
1 |
3 |
1 |
4 |
1 |
4 |
1 |
7 |
1 |
7 |
1 |
11 |
1 |
3n-5 |
1 |
3n-2 |
1 |
3n-2 |
1 |
3n+1 |
=
1 |
3 |
1 |
3n+1 |
1 |
3 |
(3)由(2)知,Tn=
n |
3n+1 |
1 |
4 |
m |
3m+1 |
n |
3n+1 |
∵T1,Tm,Tn成等比数列,
∴(
m |
3m+1 |
1 |
4 |
n |
3n+1 |
即
6m+1 |
m2 |
3n+4 |
n |
当m=1时,7=
3n+4 |
n |
当m=2时,
13 |
4 |
3n+4 |
n |
当m=3时,
19 |
9 |
3n+4 |
n |
当m=4时,
25 |
16 |
3n+4 |
n |
当m=5时,
31 |
25 |
3n+4 |
n |
当m=6时,
37 |
36 |
3n+4 |
n |
当m≥7时,m2-6m-1=(m-3)2-10>0,
则
6m+1 |
m2 |
3n+4 |
n |
4 |
n |
所以,此时不存在正整数m,n,且7<m<n,使得T1,Tm,Tn成等比数列.
综上,存在正整数m=2,n=16,且1<m<n,使得T1,Tm,Tn成等比数列.
点评:本题考查数列的通项公式和前n项和的求法,考查不等式的证明,考查正整数的求法.考查数列、不等式知识,考查化归与转化、分类与整合的数学思想,培养学生的抽象概括能力、推理论证能力、运算求解能力和创新意识.
练习册系列答案
相关题目