题目内容
【题目】(1)已知圆的圆心是直线与轴的交点,且与直线相切,求圆的标准方程;
(2)已知圆,直线过点与圆相交于两点,若,求直线的方程.
【答案】(1) (2)或
【解析】
(1)求出直线x﹣y+1=0与x轴的交点即为圆心C坐标,求出点C到直线x+y+3=0的距离
即为圆的半径,写出圆的标准方程即可;(2) 由题意画出图象,由弦长公式求出圆心到直线
l的距离,对直线l的斜率分类讨论,根据点到直线的距离公式求出直线的斜率,即可求出
直线l的方程.
(1)对于直线x﹣y+1=0,令y=0,得到x=﹣1,即圆心C(﹣1,0),
∵圆心C(﹣1,0)到直线x+y+3=0的距离d==,
∴圆C半径r=,
则圆C方程为(x+1)2+y2=2;
(2) 由题意画出图象,如图所示:
过圆心C作CM⊥PQ,则|MP|=|MQ|=|PQ|=,
由圆C的方程得到圆心C坐标(0,3),半径r=2,
在Rt△CPM中,根据勾股定理得:CM=1,
即圆心到直线的距离为1,
①当直线l的斜率不存在时,显然直线x=﹣1满足题意;
②当直线l的斜率存在时,设直线l的斜率为k,
又过A(﹣1,0),则直线l的方程为y=k(x+1),
即kx﹣y+k=0,
∴圆心到直线l的距离d==1,解得k=,
∴直线l的方程为4x﹣3y+4=0,
综上,满足题意的直线l为x=﹣1或4x﹣3y+4=0.
故答案为:x=﹣1或4x﹣3y+4=0.
【题目】第31届夏季奥林匹克运动会于2016年8月5日至8月21日在巴西里约热内卢举行.如表是近五届奥运会中国代表团和俄罗斯代表团获得的金牌数的统计数据(单位:枚).
第30届伦敦 | 第29届北京 | 第28届雅典 | 第27届悉尼 | 第26届亚特兰大 | |
中国 | 38 | 51 | 32 | 28 | 16 |
俄罗斯 | 24 | 23 | 27 | 32 | 26 |
(1)根据表格中两组数据在答题卡上完成近五届奥运会两国代表团获得的金牌数的茎叶图,并通过茎叶图比较两国代表团获得的金牌数的平均值及分散程度(不要求计算出具体数值,给出结论即可);
(2)如表是近五届奥运会中国代表团获得的金牌数之和(从第26届算起,不包括之前已获得的金牌数)随时间变化的数据:
时间(届) | 26 | 27 | 28 | 29 | 30 |
金牌数之和(枚) | 16 | 44 | 76 | 127 | 165 |
作出散点图如图:
由图可以看出,金牌数之和与时间之间存在线性相关关系,请求出关于的线性回归方程,并预测从第26届到第32届奥运会时中国代表团获得的金牌数之和为多少?
附:对于一组数据, ,…, ,其回归直线的斜率和截距的最小二乘估计分别为:,