题目内容

(本小题14分)已知函数 
(Ⅰ)若且函数在区间上存在极值,求实数的取值范围;
(Ⅱ)如果当时,不等式恒成立,求实数的取值范围;
(Ⅲ)求证:…….
(Ⅰ);(Ⅱ) ;(Ⅲ)见解析。
本试题主要是考查了导数在研究函数中的运用。求解函数的极值,和不等式的恒成立问题,以及证明不等式。
解:(Ⅰ)因为 x0,则
求解导数,判定函数单调性,得到极值。
因为函数在区间(其中)上存在极值,
得到参数k的范围。
(Ⅱ)不等式,又,则 ,构造新函数,则 
,则
分析单调性得到证明。
(Ⅲ)由(2)知:当时,恒成立,即
,则;可以证明。

解:(Ⅰ)因为 x0,则
时,;当时,.
所以在(0,1)上单调递增;在上单调递减,
所以函数处取得极大值;……….2分
因为函数在区间(其中)上存在极值,
所以 解得;……….4分
(Ⅱ)不等式,又,则 ,,则;……….6分
,则
上单调递增,
从而, 故上也单调递增, 所以
所以.  ;……….8分
(Ⅲ)由(2)知:当时,恒成立,即
,则;……….10分
所以 ,……
,
n个不等式相加得
……….14分
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网