题目内容
若函数f(x)=-+blnx在(1,+∞)上是减函数,求实数b的取值范围.
b≤1
解析
设函数.(1)若函数在区间(-2,0)内恰有两个零点,求a的取值范围;(2)当a=1时,求函数在区间[t,t+3]上的最大值.
已知函数f(x)=ax2-(2a+1)x+2lnx(a∈R).(1)若曲线y=f(x)在x=1和x=3处的切线互相平行,求a的值;(2)当a≤0时,求f(x)的单调区间。
已知f(x)=xlnx,g(x)=-x2+ax-3.(1)求函数f(x)在[t,t+2](t>0)上的最小值;(2)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围;(3)证明对一切x∈(0,+∞),都有lnx>-成立.
在F1赛车中,赛车位移与比赛时间t存在函数关系s=10t+5t2(s的单位为m,t的单位为s).求:(1)t=20s,Δt=0.1s时的Δs与;(2)t=20s时的瞬时速度.
已知函数f(x)=x3-3ax2+2bx在点x=1处有极小值-1.(1)求a、b;(2)求f(x)的单调区间.
已知函数,(a为实数).(1) 当a=5时,求函数在处的切线方程;(2) 求在区间()上的最小值;(3) 若存在两不等实根,使方程成立,求实数a的取值范围.
设f(x)=x3+ax2+bx+1的导数f′(x)满足f′(1)=2a,f′(2)=-b,其中a,b∈R.①求曲线y=f(x)在点(1,f(1))处的切线方程;②设g(x)=f′(x)e-x,求g(x)的极值.
已知函数在处取得极小值.(1)若函数的极小值是,求;(2)若函数的极小值不小于,问:是否存在实数,使得函数在上单调递减?若存在,求出的范围;若不存在,说明理由.