题目内容
【题目】下列五个命题中:
①函数y=loga(2x﹣1)+2015(a>0且a≠1)的图象过定点(1,2015);
②若定义域为R函数f(x)满足:对任意互不相等的x1、x2都有(x1﹣x2)[f(x1)﹣f(x2)]>0,则f(x)是减函数;
③f(x+1)=x2﹣1,则f(x)=x2﹣2x;
④若函数f(x)=是奇函数,则实数a=﹣1;
⑤若a=(c>0,c≠1),则实数a=3.
其中正确的命题是 .(填上相应的序号).
【答案】①③⑤
【解析】解:对于①,函数y=f(x)=loga(2x﹣1)+2015(a>0且a≠1),有f(1)=2015,即其图象过定点(1,2015),故①正确;
对于②,若定义域为R函数f(x)满足:对任意互不相等的x1、x2都有(x1﹣x2)[f(x1)﹣f(x2)]>0,即k=>0,则f(x)是增函数,故②错误;
对于③,f(x+1)=x2﹣1=[(x+1)﹣1]2﹣1=(x+1)2﹣2(x+1),则f(x)=x2﹣2x,故③正确;
对于④,若函数f(x)=是奇函数,又其定义域为R,故f(0)==0,解得实数a=1,故④错误;
对于⑤,若a==log28(c>0,c≠1),则实数a=3,故⑤正确.
综上所述,正确选项为:①③⑤.
所以答案是:①③⑤.
【考点精析】本题主要考查了命题的真假判断与应用的相关知识点,需要掌握两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系才能正确解答此题.
练习册系列答案
相关题目