题目内容

已知圆及直线. 当直线被圆截得的弦长为时, 求(1)的值; (2)求过点并与圆相切的切线方程.
(1);(2)

试题分析:(1)涉及直线被圆所截得弦长的计算问题时,一般是利用垂径定理,在以圆心、弦的端点、弦的中点为顶点的直角三角中,利用勾股定理列式求值,该题中先计算圆心到直线的距离,可列式为,进而求;(2)先利用点斜式方程设直线为,因为直线和圆相切,利用求参数,因为点在圆外,所以切线可引两条,则会想到另一条直线必是斜率不存在 情况,再补.

试题解析:(1)依题意可得圆心,则圆心到直线的距离,由勾股定理可知,代入化简得,解得,又,所以
(2)由(1)知圆, 又在圆外,①当切线方程的斜率存在时,设方程为,由圆心到切线的距离可解得 ,切线方程为……9分,②当过斜率不存在,易知直线与圆相切,综合①②可知切线方程为.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网