题目内容

精英家教网如图,已知正方体ABCD-A1B1C1D1中,E为AB的中点
(1)求直线B1C与DE所成角的余弦值;
(2)求证:平面EB1D⊥平面B1CD;
(3)求二面角E-B1C-D的余弦值.
分析:(1)连接A1D,则由A1D∥B1C?B1C与DE所成角即为A1D与DE所成角.在△A1ED中用余弦定理求解;
(2)取B1C的中点F,B1D的中点G,连接BF,EG,GF.由CD⊥平面BCC1B1?DC⊥BF?BF⊥平面B1CD,再由BF∥GE?GE⊥平面B1CD.?平面EB1D⊥B1CD;
(3)连接EF.CD⊥B1C,GF∥CD?GF⊥B1C?EF⊥B1C?∠EFG是二面角E-B1C-D的平面角,再在△EFG中求解.
解答:精英家教网解:(1)连接A1D,则由A1D∥B1C知,B1C与DE所成角即为A1D与DE所成角.连接A1E,由正方体ABCD-A1B1C1D1,可设其棱长为a,则
A1D=
2
a,A1E=DE=
5
2
a


cos∠A1DE=
A1D2+A1E2 -DE2
2•A1D•DE
=
10
5

∴直线B1C与DE所成角的余弦值是
10
5
.(4分)

(2)取B1C的中点F,B1D的中点G,连接BF,EG,GF.
∵CD⊥平面BCC1B1,且BF?平面BCC1B1
∴DC⊥BF.
又∵BF⊥B1C,CD∩B1C=C,
∴BF⊥平面B1CD
又∵GF
.
.
1
2
CD,BE
.
.
1
2
CD,
∴GF
.
.
BE,
∴四边形BFGE是平行四边形,
∴BF∥GE,
∴GE⊥平面B1CD.
∵CE?平面EB1D,
∴平面EB1D⊥B1CD.(8分)

(3)连接EF.
∵CD⊥B1C,GF∥CD,
∴GF⊥B1C.
又∵GE⊥平面B1CD,
∴EF⊥B1C,
∴∠EFG是二面角E-B1C-D的平面角.
设正方体的棱长为a,则在△EFG中,GF=
1
2
a,EF=
3
2
a,
cos∠EFG=
FG
EF
=
3
3

∴二面角E-B1C-D的余弦值为
3
3
.(12分)
点评:本题主要通过异面直线所成的角和二面角来考查线线,线面,面面平行、垂直关系的转化.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网