题目内容
(12分)利用基本不等式求最值:
(1)若,求函数 的最小值,并求此时x的值.
(2)设 ,求函数 的最大值.
【答案】
(1) 在x = 2时取得最小值4 .(2)。
【解析】(I)根据基本不等式, 可直接求出y的最小值,并求出此时的x值.
(2)因为, 所以3-2x>0,
所以, 据此得到y的最大值.
(1)当时,,所以当且仅当,即x=2时取等号.
因此,函数 在x = 2时取得最小值4 .
(2)由 得,,所以
,
当且仅当2x=3-2x,即x = 时取等号.因此,函数
练习册系列答案
相关题目