题目内容
【题目】如图,矩形中,,为的中点,现将与折起,使得平面及平面都与平面垂直.
(1)求证:平面;
(2)求二面角的余弦值.
【答案】(1)见解析(2)
【解析】分析:(1)分别取中点,分别连接,可证明平面平面,可得,又,∴四边形为平行四边形,,从而可得平面;(2)以为原点,为,正半轴,建立空间直角坐标系,可得平面的一个法向量,利用向量垂直数量积为零列方程组求出平面的法向量,由空间向量夹角余弦公式可得结果.
详解:(1)分别取中点,分别连接,则且
∵平面及平面都与平面垂直,
∴平面平面,
由线面垂直性质定理知,又,
∴四边形为平行四边形,
又平面,∴平面.
(2)如图,以为原点,为,正半轴,建立空间直角坐标系,则.
平面的一个法向量,设平面的法向量,
则,取得
∴,
注意到此二面角为钝角,
故二面角的余弦值为.
练习册系列答案
相关题目
【题目】某种新产品投放市场的100天中,前40天价格呈直线上升,而后60天其价格呈直线下降,现统计出其中4天的价格如下表:
时间 | 第4天 | 第32天 | 第60天 | 第90天 |
价格(千元) | 23 | 30 | 22 | 7 |
(1)写出价格关于时间的函数关系式;(表示投放市场的第天);
(2)销售量与时间的函数关系:,则该产品投放市场第几天销售额最高?最高为多少千元?