题目内容
在中,角、、所对的边分别为、、,且,当取最大值时,角的值为 .
已知的内角的对边分别为,且.
(1)求角的大小;
(2)若的面积为,且,求的值.
已知圆过两点,且圆心在上.
(1)求圆的方程;
(2)设是直线上的动点,是圆的两条切线,为切点,求四边形面积的最小值.
已知直线和曲线,点在直线上,若直线与曲线至少有一个公共点,且,则点的横坐标的取值范围是( )
A. B.
C. D.
已知函数.
(Ⅰ)若,当时,求的单调递减区间;
(Ⅱ)若函数有唯一的零点,求实数的取值范围.
已知函数(其中是实数),若对恒成立,且,则的单调递增区间是( )
甲乙两人有三个不同的学习小组,,可以参加,若每人必须参加并且仅能参加一个学习小组,则两人参加同一个小组的概率为( )
设抛物线的焦点为,点在上,,若以为直径的圆过点,则的方程为( )
A.或 B.或
C.或 D.或
已知圆:与轴正半轴的交点为,点沿圆顺时针运动弧长到达点,以轴的非负半轴为始边,为终边的角记为,则 .