题目内容
已知:三个内角A,B,C所对的边,向量,设
(1)若,求角;
(2)在(1)的条件下,若,求三角形ABC的面积.
(1);(2)三角形ABC的面积为.
解析试题分析:(1)由向量数量积坐标计算公式可得函数的表达式,利用三角函数的有关公式(倍角公式、辅助角公式等)将其化简得,由已知,列出方程,即可求得角的值;(2)由已知条件,化为,结合正弦定理可得:,由此得,进而求出角的值.有三角形内角和定理得,联立,可求出角和,最后可求得三角形ABC的面积.
试题解析:(1)
因为,即,所以或(舍去) 6分
(2)由,则,
所以,又因为,所以
所以三角形ABC是等边三角形,由,所以面积为. 12分
考点:1.向量数量积运算;2.利用三角恒等变换求角;3.正弦定理、余弦定理解三角形,求三角形的面积.
练习册系列答案
相关题目