题目内容
若P是椭圆
+
=1上的点,F1和F2是焦点,则k=|PF1|•|PF2|的最大值和最小值分别是______和______.
x2 |
4 |
y2 |
3 |
由题意,设|PF1|=x,
∵|PF1|+|PF2|=2a=4,∴|PF2|=4-x
∴|PF1|•|PF2|=x(4-x)=-x2+4x=-(x-2)2+4
∵a=2,b=
,∴c=
=1
∴1≤x≤3
∴x=1或3时,k=-x2+4x取最小值3;x=2时,k=-x2+4x取最大值为4
故答案为:4,3.
∵|PF1|+|PF2|=2a=4,∴|PF2|=4-x
∴|PF1|•|PF2|=x(4-x)=-x2+4x=-(x-2)2+4
∵a=2,b=
3 |
a2-b2 |
∴1≤x≤3
∴x=1或3时,k=-x2+4x取最小值3;x=2时,k=-x2+4x取最大值为4
故答案为:4,3.
练习册系列答案
相关题目