题目内容
【题目】设函数.
(1)当时,函数与的图象有三个不同的交点,求实数的范围;
(2)讨论的单调性.
【答案】(1);(2)当时,函数在上单调递减,当时,函数在上递减,在上递增,在上递减,当时,函数在上单调递减,在上单调递增,在上单调递减.
【解析】
试题分析:本题考查利用导数研究函数的单调性、函数的极值与零点个数以及分类讨论思想的应用;(1)作差,分离参数构造函数,通过导数研究函数的极值,再通过函数的图象进行求解;(2)求导,确定导函数的两个零点,讨论两零点的大小进行求解.
试题解析:(1)当时, ,
故,令,
则,
故当时,;当时,;当时,;,,故.
(2)因为,所以.
当时,恒成立,故函数在上单调递减;
当时,时,,时,,当时,,
故函数在上递减,在上递增,在上递减;当时,时,,时,,当时,;
故函数在上单调递减,在上单调递增,在上单调递减.
综上,当时,函数在上单调递减,当时,函数在上递减,在上递增,在上递减;当时,函数在上单调递减,在上单调递增,在上单调递减.
【题目】天水市第一次联考后,某校对甲、乙两个文科班的数学考试成绩进行分析,
规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,
得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为.
优秀 | 非优秀 | 合计 | |
甲班 | 10 | ||
乙班 | 30 | ||
合计 | 110 |
(1)请完成上面的列联表;
(2)根据列联表的数据,若按99.9%的可靠性要求,能否认为“成绩与班级有关系”;
(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号。试求抽到9号或10号的概率。
参考公式与临界值表:。
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
【题目】某车间20名工人年龄数据如下表:
年龄(岁) | 19 | 24 | 26 | 30 | 34 | 35 | 40 | 合计 |
工人数(人) | 1 | 3 | 3 | 5 | 4 | 3 | 1 | 20 |
(1)求这20名工人年龄的众数与平均数;
(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;
(3)从年龄在24和26的工人中随机抽取2人,求这2人均是24岁的概率.