题目内容

【题目】如图,棱长为1的正方体中,是线段上的动点,则下列结论正确的是( ).

①异面直线所成的角为

③三棱锥的体积为定值

的最小值为2

A.①②③B.①②④C.③④D.②③④

【答案】A

【解析】

①根据异面直线所成的角的定义即可判断;

②由线面垂直的性质即可判断;

③先求得M到平面DCC1D1的距离再利用锥体体积公式求解;

④将问题转化为平面图形中线段AD1的长度,利用余弦定理解三角形解得即可判断.

①∵BC

异面直线所成的角即为BC所成的角,

可得夹角为,故正确;

连接

平面A1BCD1

平面A1BCD1

正确;

∥平面DCC1D1

∴线段A1B上的点M到平面DCC1D1的距离都为1,

DCC1的面积为定值,

因此三棱锥MDCC1的体积为定值,

正确;

④将面AA1B与面A1BCD1沿A1B展成平面图形,线段AD1即为AP+PD1的最小值,

D1A1A,D1A1A=135°,

利用余弦定理解三角形得

故④不正确.

因此只有①②③正确.

故选:A.

练习册系列答案
相关题目

【题目】2019年7曰1日至3日,世界新能源汽车大会在海南博鳌召开,大会着眼于全球汽车产业的转型升级和生态环境的持续改善.某汽车公司顺应时代潮流,最新研发了一款新能源汽车,并在出厂前对100辆汽车进行了单次最大续航里程(理论上是指新能源汽车所装载的燃料或电池所能够提供给车行驶的最远里程)的测试.现对测试数据进行分析,得到如下的频率分布直方图:

(1)估计这100辆汽车的单次最大续航里程的平均值(同一组中的数据用该组区间的中点值代表).

(2)根据大量的汽车测试数据,可以认为这款汽车的单次最大续航里程近似地服从正态分布,经计算第(1)问中样本标准差的近似值为50.用样本平均数作为的近似值,用样本标准差作为的估计值,现任取一辆汽车,求它的单次最大续航里程恰在250千米到400千米之间的概率.

参考数据:若随机变量ξ服从正态分布,则.

(3)某汽车销售公司为推广此款新能源汽车,现面向意向客户推出“玩游戏,送大奖”活动,客户可根据抛掷硬币的结果,操控微型遥控车在方格图上行进,若遥控车最终停在“胜利大本营”,则可获得购车优惠券.已知硬币出现正、反面的概率都是,方格图上标有第0格、第1格、第2格、…、第50格.遥控车开始在第0格,客户每掷一次硬币,遥控车车向前移动一次,若掷出正面,遥控车向前移动一格(从),若掷出反面,遥控车向前移动两格(从),直到遥控车移到第49格(胜利大本营)或第50格(失败大本营)时,游戏结束,设遥控车移到第n格的概率为,试说明是等比数列,并解释此方案能否成功吸引顾客购买该款新能源汽车.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网