题目内容
(本小题满分12分)设函数f(x)=x2-2x+2,x∈[t,t+1](t∈R)的最小值为g(t),求g(t)的表达式.
g(t)=
解析
已知函数f(x)=- (a>0,x>0).(1)用函数的单调性定义证明:f(x)在(0,+∞)上是增函数;(2)若f(x)在[,2]上的值域是[,2],求实数a的值.
(本题满分12分)某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元.(1)分别写出两种产品的收益与投资的函数关系;(2)该家庭现有20万元资金,全部用于理财投资,问:怎样分配资金能使投资获得最大收益,其最大收益为多少万元?
已知函数f(x)=x+2ax+2, x.(1)当a=-1时,求函数的最大值和最小值;(2) 若y=f(x)在区间 上是单调 函数,求实数 a的取值范围.
已知二次函数,其导函数为,数列的前项和为点均在函数的图像上;.(Ⅰ)求数列的通项公式;(Ⅱ)若,求数列的通项公式;(Ⅲ)已知不等式成立,求证:
某沿海地区养殖的一种特色海鲜上市时间仅能持续5个月,预测上市初期和后期会因供应不足使价格呈持续上涨态势,而中期又将出现供大于求使价格连续下跌.现有三种价格模拟函数:①;②;③.(以上三式中、均为常数,且)(I)为准确研究其价格走势,应选哪种价格模拟函数(不必说明理由)(II)若,,求出所选函数的解析式(注:函数定义域是.其中表示8月1日,表示9月1日,…,以此类推);(III)在(II)的条件下研究下面课题:为保证养殖户的经济效益,当地政府计划在价格下跌期间积极拓宽外销,请你预测该海鲜将在哪几个月份内价格下跌.
(本题满分12分)已知函数在定义域上是奇函数,又是减函数。(Ⅰ)证明:对任意的,有(Ⅱ)解不等式。
(本小题满分12分)设当时,函数的值域为,且当时,恒有,求实数k的取值范围.
如图等腰梯形ABCD的两底分别为AB=10,CD=4,两腰AD=CB=5,动点P由B点沿折线BCDA向A运动,设P点所经过的路程为x,三角形ABP的面积为S.(1)求函数S=f(x)的解析式;(2)试确定点P的位置,使△ABP的面积S最大.