题目内容
【题目】已知数列是各项都不为0的无穷数列,对任意的n≥3,n, 恒成立.
(1)如果,,成等差数列,求实数的值;
(2)已知=1.①求证:数列是等差数列;②已知数列中,.数列是公比为q的等比数列,满足,,(i).求证:q是整数,且数列中的任意一项都是数列中的项.
【答案】(1)
(2)①见解析②见解析
【解析】
(1)令,可得,两边同除以,可得:,结合,,成等差数列可得:,问题得解。
(2)①在 中,用代可得: ,两式作差可得:,整理得:,再利用数学归纳法证明,假设时, 成等差数列,且公差为,则当时,成立,问题得证。
②数列是等差数列,公差为,即可求得:,即可求得,所以是整数,由,,成等比数列即可求得:,令,整理得:,又,利用二项式定理展开得:,即可求得:,问题得解。
(1)由题可得:当时,
两边同除以,可得:
因为,,成等差数列,所以
所以,解得:
(2)①由题可得:当时, …(Ⅰ)
用代上式中的,可得:
…(Ⅱ)
(Ⅱ)(Ⅰ)得:
上式两边同除以可得:
整理得:
整理得:
(ⅰ)由(1)得,当时,,,成等差数列,结论正确.
(ⅱ)假设时,结论正确。即:成等差数列,且公差为
下证时, 成等差数列.
即证
又
.
所以成立.
由(ⅰ)(ⅱ)可得:对任意的,数列是等差数列.
②由①得:数列是等差数列,公差为
所以,()
又,,成等比数列,
所以,即:
整理得:
所以,所以是整数
数列中的任意一项
令,则
整理得:,整理得:
又
所以
解得:
即:存在,使得:成立
所以数列中的任意一项都是数列中的项.
【题目】自2016年1月1日起,我国全面二孩政策正式实施,这次人口与生育政策的历史性调整,使得“要不要再生一个”,“生二孩能休多久产假”等问题成为千千万万个家庭在生育决策上避不开的话题.为了解针对产假的不同安排方案形成的生育意愿,某调查机构随机抽取了200户有生育二胎能力的适龄家庭进行问卷调查,得到如下数据:
产假安排(单位:周) | 14 | 15 | 16 | 17 | 18 |
有生育意愿家庭数 | 4 | 8 | 16 | 20 | 26 |
(1)若用表中数据所得的频率代替概率,面对产假为14周与16周,估计某家庭有生育意愿的概率分别为多少?
(2)假设从5种不同安排方案中,随机抽取2种不同安排分别作为备选方案,然后由单位根据单位情况自主选择.
①求两种安排方案休假周数和不低于32周的概率;
②如果用表示两种方案休假周数之和.求随机变量的分布列及数学期望.