题目内容
【题目】(1)问题发现
如下图,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE。
填空:①∠AEB的度数为____________;
②线段AD、BE之间的数量关系是_________。
(2)拓展探究
如下图,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=900, 点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE。请判断∠AEB的度数及线段CM、AE、BE之间的数量关系,并说明理由。
(3)解决问题
如下图,在正方形ABCD中,CD=。若点P满足PD=1,且∠BPD=900,请直接写出点A到BP的距离。
【答案】(1)① 60; ② AD=BE(2)见解析;(3)或.
【解析】
(2)∠AEB=900;AE=2CM+BE.
理由:∵△ACB和△DCE均为等腰直角三角形,∠ACB =∠DCE= 900,
∴AC=BC, CD=CE, ∠ACB=∠DCB=∠DCE-∠DCB,
即∠ACD= ∠BCE,∴△ACD≌△BCE,∴AD = BE, ∠BEC=∠ADC=1350.
∴∠AEB=∠BEC-∠CED=1350-450=900.
在等腰直角三角形DCE中,CM为斜边DE上的高,
∴CM= DM= ME,∴DE=2CM,∴AE=DE+AD=2CM+BE.
或.
(1)因为,所以,
在和中,
,CD=CE,
所以和全等,
所以AD=BE, ,所以.
(2)(2)∠AEB=900;AE=2CM+BE.
理由:∵△ACB和△DCE均为等腰直角三角形,∠ACB =∠DCE= 900,
∴AC=BC, CD=CE, ∠ACB=∠DCB=∠DCE-∠DCB,
即∠ACD= ∠BCE,∴△ACD≌△BCE,∴AD = BE, ∠BEC=∠ADC=1350.
∴∠AEB=∠BEC-∠CED=1350-450=900.
在等腰直角三角形DCE中,CM为斜边DE上的高,
∴CM= DM= ME,∴DE=2CM,∴AE=DE+AD=2CM+BE.
或.
(3)或.