题目内容

当x>1时,不等式x+
1
x-1
≥a
恒成立,则实数a的取值范围是(  )
分析:由题意当x>1时,不等式x+
1
x-1
≥a
恒成立,由于x+
1
x-1
的最小值等于3,可得a≤3,从而求得答案.
解答:解:∵当x>1时,不等式x+
1
x-1
≥a
恒成立,
∴a≤x+
1
x-1
对一切非零实数x>1均成立.
由于x+
1
x-1
=x-1+
1
x-1
+1≥2+1=3,
当且仅当x=2时取等号,
故x+
1
x-1
的最小值等于3,
∴a≤3,
则实数a的取值范围是(-∞,3].
故选D.
点评:本题考查查基本不等式的应用以及函数的恒成立问题,求出x+
1
x-1
的最小值是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网