题目内容
【题目】Sn为数列{an}的前n项和,已知 .则{an}的通项公式an= .
【答案】2n+1
【解析】解:由 ,可知4Sn+1=an+12+2an+1﹣3,
两式相减得an+12﹣an2+2(an+1﹣an)=4an+1 ,
即2(an+1+an)=an+12﹣an2=(an+1+an)(an+1﹣an),
∵an>0,∴an+1﹣an=2,
又∵a12+2a1=4a1+3,
∴a1=﹣1(舍)或a1=3,
∴数列{an}是首项为3、公差d=2的等差数列,
∴数列{an}的通项公式an=3+2(n﹣1)=2n+1.
故答案为:2n+1.
把已知数列递推式变形,可得4Sn=an2+2an﹣3,进一步得到4Sn+1=an+12+2an+1﹣3,两式作差可得数列{an}是首项为3、公差d=2的等差数列,则数列通项公式可求.
【题目】由于研究性学习的需要,中学生李华持续收集了手机“微信运动”团队中特定20名成员每天行走的步数,其中某一天的数据记录如下: 5860 6520 7326 6798 7325
8430 8215 7453 7446 6754
7638 6834 6460 6830 9860
8753 9450 9860 7290 7850
对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:
步数分组统计表(设步数为x)
组别 | 步数分组 | 频数 |
A | 5500≤x<6500 | 2 |
B | 6500≤x<7500 | 10 |
C | 7500≤x<8500 | m |
D | 8500≤x<9500 | 2 |
E | 9500≤x<10500 | n |
(Ⅰ)写出m,n的值,若该“微信运动”团队共有120人,请估计该团队中一天行走步数不少于7500步的人数;
(Ⅱ)记C组步数数据的平均数与方差分别为v1 , ,E组步数数据的平均数与方差分别为v2 , ,试分别比较v1与v2 , 与 的大小;(只需写出结论)
(Ⅲ)从上述A,E两个组别的步数数据中任取2个数据,求这2个数据步数差的绝对值大于3000步的概率.