ÌâÄ¿ÄÚÈÝ
ÒÑÖª¶þ´Îº¯Êýf£¨x£©=x2+xµÄ¶¨ÒåÓòD Ç¡ÊDz»µÈʽ f£¨-x£©+f£¨x£©¡Ü2|x|µÄ½â¼¯£¬ÆäÖµÓòΪA£®º¯Êý g(x)=x3-3tx+
tµÄ¶¨ÒåÓòΪ[0£¬1]£¬ÖµÓòΪB£®
£¨1£©Çóf £¨x£© µÄ¶¨ÒåÓòDºÍÖµÓò A£»
£¨2£©£¨Àí£© ÊÔÓú¯Êýµ¥µ÷ÐԵĶ¨Òå½â¾öÏÂÁÐÎÊÌ⣺Èô´æÔÚʵÊýx0¡Ê£¨0£¬1£©£¬Ê¹µÃº¯Êý g(x)=x3-3tx+
tÔÚ[0£¬x0]Éϵ¥µ÷µÝ¼õ£¬ÔÚ[x0£¬1]Éϵ¥µ÷µÝÔö£¬ÇóʵÊýtµÄÈ¡Öµ·¶Î§²¢ÓÃt±íʾx0£®
£¨3£©£¨Àí£© ÊÇ·ñ´æÔÚʵÊýt£¬Ê¹µÃA⊆B³ÉÁ¢£¿Èô´æÔÚ£¬ÇóʵÊýt µÄÈ¡Öµ·¶Î§£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨4£©£¨ÎÄ£© ÊÇ·ñ´æÔÚ¸ºÊµÊýt£¬Ê¹µÃA⊆B³ÉÁ¢£¿Èô´æÔÚ£¬Çó¸ºÊµÊýt µÄÈ¡Öµ·¶Î§£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨5£©£¨ÎÄ£© Èôº¯Êýg(x)=x3-3tx+
tÔÚ¶¨ÒåÓò[0£¬1]Éϵ¥µ÷µÝ¼õ£¬ÇóʵÊýtµÄÈ¡Öµ·¶Î§£®
1 |
2 |
£¨1£©Çóf £¨x£© µÄ¶¨ÒåÓòDºÍÖµÓò A£»
£¨2£©£¨Àí£© ÊÔÓú¯Êýµ¥µ÷ÐԵĶ¨Òå½â¾öÏÂÁÐÎÊÌ⣺Èô´æÔÚʵÊýx0¡Ê£¨0£¬1£©£¬Ê¹µÃº¯Êý g(x)=x3-3tx+
1 |
2 |
£¨3£©£¨Àí£© ÊÇ·ñ´æÔÚʵÊýt£¬Ê¹µÃA⊆B³ÉÁ¢£¿Èô´æÔÚ£¬ÇóʵÊýt µÄÈ¡Öµ·¶Î§£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨4£©£¨ÎÄ£© ÊÇ·ñ´æÔÚ¸ºÊµÊýt£¬Ê¹µÃA⊆B³ÉÁ¢£¿Èô´æÔÚ£¬Çó¸ºÊµÊýt µÄÈ¡Öµ·¶Î§£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨5£©£¨ÎÄ£© Èôº¯Êýg(x)=x3-3tx+
1 |
2 |
·ÖÎö£º£¨1£©ÓÉf£¨-x£©+f£¨x£©=2x2¡Ü2|x|µÄ½â¼¯ÎªÎª[-1£¬1]¿ÉÇóº¯Êý¶¨ÒåÓòD½áºÏ¶þ´Îº¯ÊýµÄÐÔÖÊ¿ÉÇó£¬ÖµÓòA
£¨2£©£¨Àí£©ÔÚ[0£¬x0]ÉÏÈÎÈ¡x1£¬x2£¬ÇÒx1£¼x2£¬Ôòg£¨x1£©£¾g£¨x2£©¿ÉµÃ3t£¾x12+x22+x1x2¡Ý3x02 ͬÀí ÓÉÔÚ[x0£¬1]Éϵ¥µ÷µÝÔöµÃ3t¡Ü3x02Ôò 3t=3x02ÓÉx0¡Ê£¨0£¬1£©¿ÉÇótµÄ·¶Î§
£¨3£©£¨Àí£© ÓÉ£¨2£©µÄµ¥µ÷ÐÔ·ÖÎöͬÀí¿ÉµÃ t µÄ²»Í¬È¡Öµ£¬º¯Êýg£¨x£©µÄµ¥µ÷ÐÔ
¢Ùµ± t¡Ü0ʱ£¬º¯Êý g£¨x£©=x3-3tx+ÔÚ x¡Ê[0£¬1]µ¥µ÷µÝÔö£¬¿ÉÇóB£¬½ø¶ø¿ÉÇótµÄ·¶Î§
¢Úµ± 0£¼t£¼1 ʱ£¬º¯Êý g£¨x£©µÄ¼õÇø¼äΪ£º[0£¬
]£»g£¨x£©µÄÔöÇø¼äΪ£º[
£¬1]£®
g£¨x£©ÔÚ x=´ïµ½×îСֵ£®¢Ûµ±t¡Ý1ʱ£¬º¯Êý g£¨x£© ÔÚÇø¼ä[0£¬1]µ¥µ÷µÝ¼õ¿ÉÇótµÄ·¶Î§
£¨4£©£¨ÎÄ£© ¼´£¨3£©£¨Àí£© ¢Ùµ± t¡Ü0ʱ£¬º¯Êý g£¨x£©=x3-3tx+ÔÚ x¡Ê[0£¬1]µ¥µ÷µÝÔö£¬¿ÉÇóB£¬½ø¶ø¿ÉÇótµÄ·¶Î§
£¨5£©£¨ÎÄ£© Àà±È £¨2£©£¨Àí£©ÔÚ[0£¬x0]ÉÏÈÎÈ¡x1£¬x2£¬ÇÒx1£¼x2£¬Ôòg£¨x1£©£¾g£¨x2£©¿ÉµÃ3t£¾x12+x22+x1x2¡Ý3x02 ͬÀí ÓÉÔÚ[x0£¬1]Éϵ¥µ÷µÝÔöµÃ3t¡Ü3x02Ôò 3t=3x02ÓÉx0¡Ê£¨0£¬1£©¿ÉÇótµÄ·¶Î§
£¨2£©£¨Àí£©ÔÚ[0£¬x0]ÉÏÈÎÈ¡x1£¬x2£¬ÇÒx1£¼x2£¬Ôòg£¨x1£©£¾g£¨x2£©¿ÉµÃ3t£¾x12+x22+x1x2¡Ý3x02 ͬÀí ÓÉÔÚ[x0£¬1]Éϵ¥µ÷µÝÔöµÃ3t¡Ü3x02Ôò 3t=3x02ÓÉx0¡Ê£¨0£¬1£©¿ÉÇótµÄ·¶Î§
£¨3£©£¨Àí£© ÓÉ£¨2£©µÄµ¥µ÷ÐÔ·ÖÎöͬÀí¿ÉµÃ t µÄ²»Í¬È¡Öµ£¬º¯Êýg£¨x£©µÄµ¥µ÷ÐÔ
¢Ùµ± t¡Ü0ʱ£¬º¯Êý g£¨x£©=x3-3tx+ÔÚ x¡Ê[0£¬1]µ¥µ÷µÝÔö£¬¿ÉÇóB£¬½ø¶ø¿ÉÇótµÄ·¶Î§
¢Úµ± 0£¼t£¼1 ʱ£¬º¯Êý g£¨x£©µÄ¼õÇø¼äΪ£º[0£¬
t |
t |
g£¨x£©ÔÚ x=´ïµ½×îСֵ£®¢Ûµ±t¡Ý1ʱ£¬º¯Êý g£¨x£© ÔÚÇø¼ä[0£¬1]µ¥µ÷µÝ¼õ¿ÉÇótµÄ·¶Î§
£¨4£©£¨ÎÄ£© ¼´£¨3£©£¨Àí£© ¢Ùµ± t¡Ü0ʱ£¬º¯Êý g£¨x£©=x3-3tx+ÔÚ x¡Ê[0£¬1]µ¥µ÷µÝÔö£¬¿ÉÇóB£¬½ø¶ø¿ÉÇótµÄ·¶Î§
£¨5£©£¨ÎÄ£© Àà±È £¨2£©£¨Àí£©ÔÚ[0£¬x0]ÉÏÈÎÈ¡x1£¬x2£¬ÇÒx1£¼x2£¬Ôòg£¨x1£©£¾g£¨x2£©¿ÉµÃ3t£¾x12+x22+x1x2¡Ý3x02 ͬÀí ÓÉÔÚ[x0£¬1]Éϵ¥µ÷µÝÔöµÃ3t¡Ü3x02Ôò 3t=3x02ÓÉx0¡Ê£¨0£¬1£©¿ÉÇótµÄ·¶Î§
½â´ð£º½â£º£¨1£©¡ßf£¨-x£©+f£¨x£©=2x2¡Ü2|x|µÄ½â¼¯ÎªÎª[-1£¬1]
º¯Êý¶¨ÒåÓòD=[-1£¬1]ÖµÓò A=[-
£¬2]¡£¨4·Ö£©
£¨2£©£¨Àí£©ÔÚ[0£¬x0]ÉÏÈÎÈ¡x1£¬x2£¬ÇÒx1£¼x2£¬Ôòg£¨x1£©£¾g£¨x2£©
¡àx13-3tx1+
£¾ x23-3tx2+
¡à3t£¾x12+x22+x1x2¡Ý3x02 ¡£¨6·Ö£©
ͬÀí ÓÉÔÚ[x0£¬1]Éϵ¥µ÷µÝÔöµÃ3t¡Ü3x02
ËùÒÔ 3t=3x02ÓÉx0¡Ê£¨0£¬1£©µÃt¡Ê£¨0£¬1£©¡£¨10·Ö£©
£¨3£©£¨Àí£© ÓÉ£¨2£©µÄµ¥µ÷ÐÔ·ÖÎöͬÀí¿ÉµÃ t µÄ²»Í¬È¡Öµ£¬º¯Êýg£¨x£©µÄµ¥µ÷ÐÔ
¢Ùµ± t¡Ü0ʱ£¬º¯Êý g£¨x£©=x3-3tx+ÔÚ x¡Ê[0£¬1]µ¥µ÷µÝÔö£¬¡àB=[£¬1-
t]£¬
¡à
¡Ü-
ÇÒ2¡Ü1-
t£¬½âµÃt¡Ü-
£¬¡£¨13·Ö£©
¢Úµ± 0£¼t£¼1 ʱ£¬º¯Êý g£¨x£©µÄ¼õÇø¼äΪ£º[0£¬
]£»g£¨x£©µÄÔöÇø¼äΪ£º[
£¬1]£®
g£¨x£©ÔÚ x=´ïµ½×îСֵ£®g(0)¡Ý2»òg(1)¡Ý2£»ÇÒg(
)¡Ü-
´ËÓë0£¼t£¼1ì¶Ü£® ¡£¨15·Ö£©
¢Ûµ±t¡Ý1ʱ£¬º¯Êý g£¨x£© ÔÚÇø¼ä[0£¬1]µ¥µ÷µÝ¼õ£¬¡àB=[1-
t£¬
]
¡à
¡Ý2ÇÒ1-
t¡Ü-
£¬¼´t¡Ý4
×ÛÉÏËùÊö£ºtµÄÈ¡Öµ·¶Î§ÊÇ£º(-¡Þ£¬-
]¡È[4£¬+¡Þ)¡£¨18·Ö£©
£¨4£©£¨ÎÄ£© ¼´£¨3£©£¨Àí£©¢Ù
µ± t¡Ü0ʱ£¬º¯Êý g£¨x£©=x3-3tx+ÔÚ x¡Ê[0£¬1]µ¥µ÷µÝÔö£¬¡àB=[£¬1-
t]£¬
¡à
¡Ü-
ÇÒ2¡Ü1-
t£¬½âµÃt¡Ü-
£¬£¨10·Ö£©
£¨5£©£¨ÎÄ£© Àà±È £¨2£©£¨Àí£© µÃt¡Ý1 ¡£¨18·Ö£©
º¯Êý¶¨ÒåÓòD=[-1£¬1]ÖµÓò A=[-
1 |
4 |
£¨2£©£¨Àí£©ÔÚ[0£¬x0]ÉÏÈÎÈ¡x1£¬x2£¬ÇÒx1£¼x2£¬Ôòg£¨x1£©£¾g£¨x2£©
¡àx13-3tx1+
1 |
2 |
1 |
2 |
¡à3t£¾x12+x22+x1x2¡Ý3x02 ¡£¨6·Ö£©
ͬÀí ÓÉÔÚ[x0£¬1]Éϵ¥µ÷µÝÔöµÃ3t¡Ü3x02
ËùÒÔ 3t=3x02ÓÉx0¡Ê£¨0£¬1£©µÃt¡Ê£¨0£¬1£©¡£¨10·Ö£©
£¨3£©£¨Àí£© ÓÉ£¨2£©µÄµ¥µ÷ÐÔ·ÖÎöͬÀí¿ÉµÃ t µÄ²»Í¬È¡Öµ£¬º¯Êýg£¨x£©µÄµ¥µ÷ÐÔ
¢Ùµ± t¡Ü0ʱ£¬º¯Êý g£¨x£©=x3-3tx+ÔÚ x¡Ê[0£¬1]µ¥µ÷µÝÔö£¬¡àB=[£¬1-
5 |
2 |
¡à
t |
2 |
1 |
4 |
5 |
2 |
1 |
2 |
¢Úµ± 0£¼t£¼1 ʱ£¬º¯Êý g£¨x£©µÄ¼õÇø¼äΪ£º[0£¬
t |
t |
g£¨x£©ÔÚ x=´ïµ½×îСֵ£®g(0)¡Ý2»òg(1)¡Ý2£»ÇÒg(
t |
1 |
4 |
¢Ûµ±t¡Ý1ʱ£¬º¯Êý g£¨x£© ÔÚÇø¼ä[0£¬1]µ¥µ÷µÝ¼õ£¬¡àB=[1-
5 |
2 |
t |
2 |
¡à
t |
2 |
5 |
2 |
1 |
4 |
×ÛÉÏËùÊö£ºtµÄÈ¡Öµ·¶Î§ÊÇ£º(-¡Þ£¬-
1 |
2 |
£¨4£©£¨ÎÄ£© ¼´£¨3£©£¨Àí£©¢Ù
µ± t¡Ü0ʱ£¬º¯Êý g£¨x£©=x3-3tx+ÔÚ x¡Ê[0£¬1]µ¥µ÷µÝÔö£¬¡àB=[£¬1-
5 |
2 |
¡à
t |
2 |
1 |
4 |
5 |
2 |
1 |
2 |
£¨5£©£¨ÎÄ£© Àà±È £¨2£©£¨Àí£© µÃt¡Ý1 ¡£¨18·Ö£©
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁ˾ø¶ÔÖµ²»µÈʽµÄ½â·¨£¬¼°¶þ´Îº¯Êý±ÕÇø¼äÉϵÄ×îÖµµÄÇó½â£¬º¯ÊýµÄµ¥µ÷ÐÔµÄÓ¦Ó㬽â´ð±¾ÌâÒªÇó¿¼Éú¾ß±¸½ÏÇ¿µÄÂß¼ÍÆÀíµÄÄÜÁ¦¼°¼ÆËãµÄÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿