题目内容
如图,在棱长为ɑ 的正方体ABCD-A1B1C1D1中,E、F、G分别是CB.CD.CC1的中点.(1)求直线 A1C与平面ABCD所成角的正弦的值;
(2)求证:平面A B1D1∥平面EFG.
分析:(1)欲求直线 A1C与平面ABCD所成角的正弦的值,在正方体ABCD-A1B1C1D1中,由于AC为A1C在平面ABCD的射影,故∠A1CA为A1C与平面ABCD所成角,最后在直角三角形中求解即得;
(2)欲证平面AB1D1∥平面EFG,根据面面平行的判定定理可知,只须证明线面平行即可.在正方体ABCD-A1B1C1D1中连接BD,则DD1∥BB1,DD1=BB1,利用直线间的平行关系可证得:D1B1∥平面GEF及AB1∥平面GEF,从而问题解决.
(2)欲证平面AB1D1∥平面EFG,根据面面平行的判定定理可知,只须证明线面平行即可.在正方体ABCD-A1B1C1D1中连接BD,则DD1∥BB1,DD1=BB1,利用直线间的平行关系可证得:D1B1∥平面GEF及AB1∥平面GEF,从而问题解决.
解答:解:(1)∵A1C∩平面ABCD=C,在正方体ABCD-A1B1C1D1中A1A⊥平面ABCD
∴AC为A1C在平面ABCD的射影
∴∠A1CA为A1C与平面ABCD所成角sinA1CA=
=
正方体的棱长为a∴AC=
a,A1C=
a
证明:(2)在正方体ABCD-A1B1C1D1中
连接BD,则DD1∥BB1,DD1=BB1,
∴D1DBB1为平行四边形
∴D1B1∥DB
∵E,F分别为BC,CD的中点
∴EF∥BD∴EF∥D1B1
∵EF?平面GEF,D1B1?平面GEF
∴D1B1∥平面GEF
同理AB1∥平面GEF
∵D1B1∩AB1=B1
∴平面AB1D1∥平面EFG.
∴AC为A1C在平面ABCD的射影
∴∠A1CA为A1C与平面ABCD所成角sinA1CA=
A1A |
A1C |
| ||
3 |
2 |
3 |
证明:(2)在正方体ABCD-A1B1C1D1中
连接BD,则DD1∥BB1,DD1=BB1,
∴D1DBB1为平行四边形
∴D1B1∥DB
∵E,F分别为BC,CD的中点
∴EF∥BD∴EF∥D1B1
∵EF?平面GEF,D1B1?平面GEF
∴D1B1∥平面GEF
同理AB1∥平面GEF
∵D1B1∩AB1=B1
∴平面AB1D1∥平面EFG.
点评:本题主要考查了直线与平面之间所成角、平面与平面平行的判定、平面与平面垂直的判定,考查空间想象能力、运算能力和推理论证能力,属于中档题.
练习册系列答案
相关题目