题目内容
已知数列3,7,11,…,139与2,9,16,…,142,则它们所有公共项的个数为( )
分析:可先分别求出数列3,7,11,…,139与2,9,16,…,142的通项公式,判断最后一项是第几项,再根据公共项相等,得出含项数m,n的等式,再根据m,n为整数,求出个数即可.
解答:解;由题意可知数列3,7,11,…,139的通项公式为an=4n-1,139是数列第35项.
数列2,9,16,…,142的通项公式为bm=7m-5,142是数列第21项,
设数列3,7,11,…,139第n项与,数列2,9,16,…,142的第m项相同,则4n-1=7m-5,n=
=
-1,
∴m为4的倍数,m小于21,n小于35,由
此可知,m只能为4,8,12,16,20.此时n的对应值为6,13,20,27,34
所以,公共项的个数为5.
故选B
数列2,9,16,…,142的通项公式为bm=7m-5,142是数列第21项,
设数列3,7,11,…,139第n项与,数列2,9,16,…,142的第m项相同,则4n-1=7m-5,n=
7m-4 |
4 |
7m |
4 |
∴m为4的倍数,m小于21,n小于35,由
此可知,m只能为4,8,12,16,20.此时n的对应值为6,13,20,27,34
所以,公共项的个数为5.
故选B
点评:本题考查了等差数列的通项公式,属常规题,必须掌握.
练习册系列答案
相关题目
已知数列
,
,
,
,…,则5
是数列的( )
3 |
7 |
11 |
15 |
3 |
A、第18项 | B、第19项 |
C、第17项 | D、第20项 |