ÌâÄ¿ÄÚÈÝ
¸ø³öÒÔÏÂËĸöÃüÌ⣺
¢ÙÒÑÖªÃüÌâp£º?x¡ÊR£¬tanx=2£»ÃüÌâq£º?x¡ÊR£¬x2-x+1¡Ý0£®ÃüÌâpºÍq¶¼ÊÇÕæÃüÌ⣻
¢Ú¹ýµã£¨-1£¬2£©ÇÒÔÚxÖáºÍyÖáÉϵĽؾàÏàµÈµÄÖ±Ïß·½³ÌÊÇx+y-1=0»ò2x+y=0£»
¢Ûº¯Êýf£¨x£©=lnx+2x-1ÔÚ¶¨ÒåÓòÄÚÓÐÇÒÖ»ÓÐÒ»¸öÁãµã£»
¢ÜÏȽ«º¯Êýy=sin(2x-
)µÄͼÏóÏò×óƽÒÆ
¸öµ¥Î»£¬ÔÙ½«Ðº¯ÊýµÄÖÜÆÚÀ©´óΪÔÀ´µÄÁ½
±¶£¬ÔòËùµÃͼÏóµÄº¯Êý½âÎöʽΪy=sinx£®
ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅΪ______£®£¨°ÑÄãÈÏΪÕýÈ·µÄÃüÌâÐòºÅ¶¼ÌîÉÏ£©
¢ÙÒÑÖªÃüÌâp£º?x¡ÊR£¬tanx=2£»ÃüÌâq£º?x¡ÊR£¬x2-x+1¡Ý0£®ÃüÌâpºÍq¶¼ÊÇÕæÃüÌ⣻
¢Ú¹ýµã£¨-1£¬2£©ÇÒÔÚxÖáºÍyÖáÉϵĽؾàÏàµÈµÄÖ±Ïß·½³ÌÊÇx+y-1=0»ò2x+y=0£»
¢Ûº¯Êýf£¨x£©=lnx+2x-1ÔÚ¶¨ÒåÓòÄÚÓÐÇÒÖ»ÓÐÒ»¸öÁãµã£»
¢ÜÏȽ«º¯Êýy=sin(2x-
¦Ð |
3 |
¦Ð |
6 |
±¶£¬ÔòËùµÃͼÏóµÄº¯Êý½âÎöʽΪy=sinx£®
ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅΪ______£®£¨°ÑÄãÈÏΪÕýÈ·µÄÃüÌâÐòºÅ¶¼ÌîÉÏ£©
¢ÙÃüÌâp£º?x¡ÊR£¬tanx=2ΪÕæÃüÌ⣬ÃüÌâq£º?x¡ÊR£¬x2-x+1=(x-
)2+
¡Ý0ΪÕæÃüÌ⣬¢ÙÕýÈ·
¢Ú¹ýµã£¨-1£¬2£©ÇÒÔÚxÖáºÍyÖáÉϵĽؾàÏàµÈ
£¨i£©µ±½Ø¾àa=b=0ʱ£¬Ö±Ïß·½³ÌΪy=-2x¼´2x+y=0
£¨ii£©µ±½Ø¾àa=b¡Ù0ʱ£¬¿ÉÉèÖ±Ïß·½³ÌΪ
+
=1£¬ÓÉÖ±Ïß¹ý£¨-1£¬2£©¿ÉµÃa=1£¬ÔòÖ±Ïß·½³ÌΪx+y-1=0£¬¢ÚÕýÈ·
¢Û¸ù¾Ýº¯ÊýµÄͼÏó¿ÉÖª£¬º¯Êýy=lnzÓ뺯Êýy=-2x+1µÄº¯Í¼ÏóÖ»ÓÐÒ»¸ö½»µã£¬¼´º¯Êýf£¨x£©=lnx+2x-1ÔÚ¶¨ÒåÓòÄÚÓÐÇÒÖ»ÓÐÒ»¸öÁãµã£»¢ÛÕýÈ·
¢Ü½«º¯Êýy=sin(2x-
)µÄͼÏóÏò×óƽÒÆ
¸öµ¥Î»¿ÉµÃº¯Êýy=sin2xµÄͼÏó£¬ÔÙ½«Ðº¯ÊýµÄÖÜÆÚÀ©´óΪÔÀ´µÄÁ½±¶£¬¿ÉµÃͼÏóµÄº¯Êý½âÎöʽΪy=sinx£®¢ÜÕýÈ·
¹Ê´ð°¸Îª£º¢Ù¢Ú¢Û¢Ü
1 |
2 |
3 |
4 |
¢Ú¹ýµã£¨-1£¬2£©ÇÒÔÚxÖáºÍyÖáÉϵĽؾàÏàµÈ
£¨i£©µ±½Ø¾àa=b=0ʱ£¬Ö±Ïß·½³ÌΪy=-2x¼´2x+y=0
£¨ii£©µ±½Ø¾àa=b¡Ù0ʱ£¬¿ÉÉèÖ±Ïß·½³ÌΪ
x |
a |
y |
a |
¢Û¸ù¾Ýº¯ÊýµÄͼÏó¿ÉÖª£¬º¯Êýy=lnzÓ뺯Êýy=-2x+1µÄº¯Í¼ÏóÖ»ÓÐÒ»¸ö½»µã£¬¼´º¯Êýf£¨x£©=lnx+2x-1ÔÚ¶¨ÒåÓòÄÚÓÐÇÒÖ»ÓÐÒ»¸öÁãµã£»¢ÛÕýÈ·
¢Ü½«º¯Êýy=sin(2x-
¦Ð |
3 |
¦Ð |
6 |
¹Ê´ð°¸Îª£º¢Ù¢Ú¢Û¢Ü
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
¶¨ÒåƽÃæÏòÁ¿Ö®¼äµÄÒ»ÖÖÔËËã¡°*¡±ÈçÏ£º¶ÔÈÎÒâµÄ
=(m£¬n)£¬
=(p£¬q)£¬Áî
*
=mq-np£®¸ø³öÒÔÏÂËĸöÃüÌ⣺£¨1£©Èô
Óë
¹²Ïߣ¬Ôò
*
=0£»£¨2£©
*
=
*
£»£¨3£©¶ÔÈÎÒâµÄ¦Ë¡ÊR£¬ÓÐ(¦Ë
)*
=¦Ë(
*
)£¨4£©(
*
)2+(
•
)2=|
|2•|
|2£®£¨×¢£ºÕâÀï
•
Ö¸
Óë
µÄÊýÁ¿»ý£©ÔòÆäÖÐËùÓÐÕæÃüÌâµÄÐòºÅÊÇ£¨¡¡¡¡£©
a |
b |
a |
b |
a |
b |
a |
b |
a |
b |
b |
a |
a |
b |
a |
b |
a |
b |
a |
b |
a |
b |
a |
b |
a |
b |
A¡¢£¨1£©£¨2£©£¨3£© |
B¡¢£¨2£©£¨3£©£¨4£© |
C¡¢£¨1£©£¨3£©£¨4£© |
D¡¢£¨1£©£¨2£©£¨4£© |