题目内容

【题目】某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如下表1:

年份x

2011

2012

2013

2014

2015

储蓄存款y

(千亿元)

5

6

7

8

10

为了研究计算的方便,工作人员将上表的数据进行了处理,得到下表2:

时间代号t

1

2

3

4

5

z

0

1

2

3

5

(1)求z关于t的线性回归方程;

(2)通过(1)中的方程,求出y关于x的回归方程;

(3)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?

(附:对于线性回归方程,其中

【答案】(1);(2);(3)15.6千亿元

【解析】

(1)由所给数据看出,做出平均数,利用最小二乘法做出,写出线性回归方程.
(2),代入得到关于的回归方程;
(3)把所给的的值代入线性回归方程,求出变化以后的预报值,得到结果.

:(1)

.

(2),代入得到:

(Ⅲ)

预测到2020年年底,该地储蓄存款额可达15.6千亿元

练习册系列答案
相关题目

【题目】对于两条平行直线(下方)和图象有如下操作:将图象在直线下方的部分沿直线翻折,其余部分保持不变,得到图象;将图象在直线上方的部分沿直线翻折,其余部分保持不变,得到图象:再将图在直线下方的部分沿直线翻折,其余部分保持不变,得到图象;再将图象在直线上方的部分沿直线翻折,其余部分保持不变,得到图象;以此类推…;直到图象上所有点均在之间()操作停止,此时称图象为图象关于直线衍生图形,线段关于直线的“衍生图形”为折线段.

(1)直线型

平面直角坐标系中,设直线,直线

令图象的函数图象,则图象的解析式为

②令图像的函数图象,请你画出的图象

若函数的图象与图象有且仅有一个交点,且交点在轴的左侧,那么的取值范围是_______.

请你观察图象并描述其单调性,直接写出结果_______.

请你观察图象并判断其奇偶性,直接写出结果_______.

图象所对应函数的零点为_______.

任取图象中横坐标的点,那么在这个变化范围中所能取到的最高点的坐标为(______________),最低点坐标为(______________.

若直线与图象2个不同的交点,则的取值范围是_______.

根据函数图象,请你写出图象的解析式_______.

(2)曲线型

若图象为函数的图象,

平面直角坐标系中,设直线,直线

则我们可以很容易得到所对应的解析式为.

请画出的图象,记所对应的函数解析式为.

函数的单调增区间为_______,单调减区间为_______.

时候,函数的最大值为_______,最小值为_______.

若方程有四个不同的实数根,则的取值范围为_______.

(3)封闭图形型

平面直角坐标系中,设直线,直线

设图象为四边形,其顶点坐标分别为,,,,四边形关于直线的“衍生图形”为.

的周长为_______.

②若直线平分的周长,_______.

③将沿右上方方向平移个单位,则平移过程中所扫过的面积为_______.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网