ÌâÄ¿ÄÚÈÝ
ÒÑÖªSnÊÇÊýÁÐ{an}µÄÇ°nÏîºÍ£¬SnÂú×ã¹Øϵʽ2Sn=Sn-1-(1 |
2 |
1 |
2 |
£¨1£©Áîbn=2nan£¬ÇóÖ¤ÊýÁÐ{bn}ÊǵȲîÊýÁУ¬
£¨2£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨3£©¶ÔÓÚÊýÁÐ{un}£¬Èô´æÔÚ³£ÊýM£¾0£¬¶ÔÈÎÒâµÄn¡ÊN*£¬ºãÓÐ|un+1-un|+|un-un-1|+¡|u2-u1|¡ÜM³ÉÁ¢£¬³ÆÊýÁÐ{un}Ϊ¡°²î¾ø¶ÔºÍÓнçÊýÁС±£¬Ö¤Ã÷£ºÊýÁÐ{an}Ϊ¡°²î¾ø¶ÔºÍÓнçÊýÁС±£®
·ÖÎö£º£¨1£©ÕûÀíÌâÉèµÝÍÆʽµÃSn=-an-(
)n-1+2½ø¶ø±íʾ³öSn+1£¬½ø¶ø¸ù¾Ýan+1=Sn+1-Sn£¬ÇóµÃan+1ºÍanµÄµÝÍÆʽ£¬ÕûÀíµÃ2n+1an+1=2n•an+1£¬½ø¶ø¸ù¾Ýbn=2nan£¬ÇóµÃbn+1-bn=1£¬½ø¶ø¸ù¾ÝµÈ²îÊýÁеĶ¨ÒåÅжϳöÊýÁÐΪµÈ²îÊýÁУ®
£¨2£©¸ù¾Ý£¨1£©ÖÐÊýÁÐ{bn}µÄÊ×ÏîºÍ¹«²î£¬ÇóµÃÊýÁеÄͨÏʽ£¬½ø¶ø¸ù¾Ýbn=2nanÇóµÃan£®
£¨3£©°Ñan´úÈë|an+1-an|+|an-an-1|+¡+|a2-a1|ÖУ¬ÀûÓÃÀûÓôíλÏë¼õ·¨ÇóµÃsn-
sn£¼
£¬½ø¶øÅжϳöÒÔSn¡Ü
ºã³ÉÁ¢£¬¸ù¾Ý¡°²î¾ø¶ÔºÍÓнçÊýÁС±µÄ¶¨Ò壬֤Ã÷³öÊýÁÐ{an}Ϊ¡°²î¾ø¶ÔºÍÓнçÊýÁС±£®
1 |
2 |
£¨2£©¸ù¾Ý£¨1£©ÖÐÊýÁÐ{bn}µÄÊ×ÏîºÍ¹«²î£¬ÇóµÃÊýÁеÄͨÏʽ£¬½ø¶ø¸ù¾Ýbn=2nanÇóµÃan£®
£¨3£©°Ñan´úÈë|an+1-an|+|an-an-1|+¡+|a2-a1|ÖУ¬ÀûÓÃÀûÓôíλÏë¼õ·¨ÇóµÃsn-
1 |
2 |
1 |
4 |
1 |
2 |
½â´ð£º½â£º£¨1£©µ±n¡Ý2ʱ£¬Sn=-an-(
)n-1+2£¬
Sn+1=-an+1-(
)n+2
ËùÒÔan+1=-an+1+an+(
)n£¬
¼´2an+1=an+(
)n£¬
ËùÒÔ2n+1an+1=2n•an+1
¼´bn+1-bn=1£¬£¨n¡Ý2£©£¬ÓÖb2-b1=22•2¡Áa1=1
ËùÒÔ£¬bn+1-bn=1£¬n¡ÊN+¼´{bn}ΪµÈ²îÊýÁÐ
£¨2£©b1=2¡Áa1=1 £¬ bn=1+(n-1)=n£¬ an=
£¨3£©ÓÉÓÚ|an+1-an|+|an-an-1|+¡+|a2-a1|=
+
+¡+
sn-
sn£¼
ËùÒÔSn¡Ü
ºã³ÉÁ¢£¬
¼´[an]Ϊ¡°²î¾ø¶ÔºÍÓнçÊýÁС±£®
1 |
2 |
Sn+1=-an+1-(
1 |
2 |
ËùÒÔan+1=-an+1+an+(
1 |
2 |
¼´2an+1=an+(
1 |
2 |
ËùÒÔ2n+1an+1=2n•an+1
¼´bn+1-bn=1£¬£¨n¡Ý2£©£¬ÓÖb2-b1=22•2¡Áa1=1
ËùÒÔ£¬bn+1-bn=1£¬n¡ÊN+¼´{bn}ΪµÈ²îÊýÁÐ
£¨2£©b1=2¡Áa1=1 £¬ bn=1+(n-1)=n£¬ an=
n |
2n |
£¨3£©ÓÉÓÚ|an+1-an|+|an-an-1|+¡+|a2-a1|=
n-1 |
2n+1 |
n-2 |
2n |
0 |
22 |
sn-
1 |
2 |
1 |
4 |
ËùÒÔSn¡Ü
1 |
2 |
¼´[an]Ϊ¡°²î¾ø¶ÔºÍÓнçÊýÁС±£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁËÊýÁеĵÝÍÆʽ£®¿¼²éÁËѧÉú×ۺϷÖÎöÎÊÌâºÍ´´ÔìÐÔ˼άµÄÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿