题目内容
【题目】在平面直角坐标系中,点,分别是椭圆 的左、右焦点,过点且与轴垂直的直线与椭圆交于,两点.若为锐角,则该椭圆的离心率的取值范围是_____
【答案】
【解析】
由题设知F1(﹣c,0),F2(c,0),A(﹣c,),B(﹣c,),由△是锐角三角形,知tan∠AF1 F2<1,所以1,由此能求出椭圆的离心率e的取值范围.
解:∵点F1、F2分别是椭圆1(a>b>0)的左、右焦点,
过F1且垂直于x轴的直线与椭圆交于A、B两点,
∴F1(﹣c,0),F2(c,0),A(c,),B(c,),
∵△是锐角三角形,
∴∠AF1 F2<45°,∴tan∠AF1 F2<1,
∴1,
整理,得b2<2ac,
∴a2﹣c2<2ac,
两边同时除以a2,并整理,得e2+2e﹣1>0,
解得e1,或e1,(舍),
∴0<e<1,
∴椭圆的离心率e的取值范围是(1,1).
故答案为:(1,1).
练习册系列答案
相关题目
【题目】进入12月以业,在华北地区连续出现两次重污染天气的严峻形势下,我省坚持保民生,保蓝天,各地严格落实机动车限行等一系列“管控令”,某市交通管理部门为了了解市民对“单双号限行”的态度,随机采访了200名市民,将他们的意见和是否拥有私家车的情况进行了统计,得到如下的列联表:
赞同限行 | 不赞同限行 | 合计 | |
没有私家车 | 90 | 20 | 110 |
有私家车 | 70 | 40 | 110 |
合计 | 160 | 60 | 220 |
(1)根据上面的列联表判断能否在犯错误的概率不超过的前提下认为“对限行的态度与是否拥有私家车有关”;
(2)为了了解限行之后是否对交通拥堵、环境染污起到改善作用,从上述调查的不赞同限行的人员中按是否拥有私家车分层抽样抽取6人,再从这6人中随机抽出3名进行电话回访,求3人中至少有1人没有私家车的概率.
附: ,其中.