题目内容
设数列的前项和,数列满足.
(1)求数列的通项公式;
(2)求数列的前项和.
(1);(2).
解析试题分析:本题主要考查由求、对数的运算、裂项相消法、等差数列的前n项和公式等基础知识,考查学生的分析问题解决问题的能力、转化能力和计算能力.第一问,由求需要分2步:,在解题的最后需要验证2步是否可以合并成一个式子;第二问,先利用对数式的运算化简的表达式,根据表达式的特点,利用裂项相消法求数列的前n项和.
试题解析:(1)时,, 2分
,∴
∴,
∴数列的通项公式为:. 6分
(2) 9分
. 12分
考点:由求、对数的运算、裂项相消法、等差数列的前n项和公式.
练习册系列答案
相关题目
有一种密英文的明文(真实文)按字母分解,其中英文的a,b,c, ,z的26个字母(不分大小写),依次对应1,2,3, ,26这26个自然数,见如下表格:
a | b | c | d | e | f | g | h | i | j | k | l | m |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
n | o | p | q | r | s | t | u | v | w | x | y | z |
14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |
给出如下变换公式:
将明文转换成密文,如,即变成;如,即变成.
(1)按上述规定,将明文译成的密文是什么?
(2)按上述规定,若将某明文译成的密文是,那么原来的明文是什么?