题目内容

(本小题满分13分)

  如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的

  左、右焦点为顶点的三角形的周长为.一等轴双曲线的顶点是该椭

  圆的焦点,设为该双曲线上异于顶点的任一点,直线与椭圆的交点

  分别 为

   (Ⅰ)求椭圆和双曲线的标准方程; 

   (Ⅱ)设直线的斜率分别为,证明

   (Ⅲ)是否存在常数,使得恒成立?

      若存在,求的值;若不存在,请说明理由.

                                                             

【解析】(Ⅰ)由题意知,椭圆离心率为,得,又,所以可解得,所以,所以椭圆的标准方程为;所以椭圆的焦点坐标为(,0),因为双曲线为等轴双曲线,且顶点是该椭圆的焦点,所以该双曲线的标准方程为

(Ⅱ)设点P(),则==,所以=,又点P()在双曲线上,所以有,即,所以=1。

(Ⅲ)假设存在常数,使得恒成立,则由(Ⅱ)知,所以设直线AB的方程为,则直线CD的方程为,由方程组消y得:,设

则由韦达定理得:

所以|AB|==,同理可得

|CD|===

又因为,所以有=+

=,所以存在常数,使得恒成

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网