题目内容
【题目】德国数学家科拉茨1937年提出了一个著名的猜想:任给一个正整数,如果是偶数,就将它减半(即);如果是奇数,则将它乘3加1(即),不断重复这样的运算,经过有限步后,一定可以得到1.对于科拉茨猜想,目前谁也不能证明,也不能否定,现在请你研究:如果对正整数(首项)按照上述规则施行变换后的第6项为1(注:1可以多次出现),则的所有不同值的个数为( )
A.3B.4C.5D.32
【答案】A
【解析】
由题意:任给一个正整数,如果是偶数,就将它减半(即);如果是奇数,则将它乘3加1(即),我们可以从第六项为1出发,逐项求出各项的取值,可得的所有不同值的个数.
解:由题意:如果对正整数(首项)按照上述规则施行变换后的第6项为1,
则变换中的第5项一定是2,
变换中的第4项一定是4,
变换中的第3项可能是1,也可能是8,
变换中的第2项可能是2,也可能是16,
则的可能是4,也可能是5,也可能是32,
故的所有可能的取值为,
故选:A.
【题目】为了丰富学生的课外文化生活,某中学积极探索开展课外文体活动的新途径及新形式,取得了良好的效果.为了调查学生的学习积极性与参加文体活动是否有关,学校对200名学生做了问卷调查,列联表如下:
参加文体活动 | 不参加文体活动 | 合计 | |
学习积极性高 | 80 | ||
学习积极性不高 | 60 | ||
合计 | 200 |
已知在全部200人中随机抽取1人,抽到学习积极性不高的学生的概率为.
(1)请将上面的列联表补充完整;
(2)是否有99.9%的把握认为学习积极性高与参加文体活动有关?请说明你的理由;
(3)若从不参加文体活动的同学中按照分层抽样的方法选取5人,再从所选出的5人中随机选取2人,求至少有1人学习积极性不高的概率.
附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,其中.