题目内容
【题目】若f(x)是奇函数,且在(0,+∞)上是增函数,又f(﹣3)=0,则(x﹣1)f(x)<0的解是( )
A.(﹣3,0)∪(1,+∞)
B.(﹣3,0)∪(0,3)
C.(﹣∞,﹣3)∪(3,+∞)
D.(﹣3,0)∪(1,3)
【答案】D
【解析】解:∵f(x)是R上的奇函数,且在(0,+∞)内是增函数, ∴在(﹣∞,0)内f(x)也是增函数,
又∵f(﹣3)=0,∴f(3)=0
∴当x∈(﹣∞,﹣3)∪(0,3)时,f(x)<0;
当x∈(﹣3,0)∪(3,+∞)时,f(x)>0;
∵(x﹣1)f(x)<0
∴ 或
解可得﹣3<x<0或1<x<3
∴不等式的解集是(﹣3,0)∪(1,3)
故选D.
【考点精析】根据题目的已知条件,利用奇偶性与单调性的综合的相关知识可以得到问题的答案,需要掌握奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性.
练习册系列答案
相关题目
【题目】对一批共50件的某电器进行分类检测,其重量(克)统计如下:
质量段 | [80,85) | [85,90) | [90,95) | [95,100] |
件数 | 5 | a | 15 | b |
规定重量在82克及以下的为“A”型,重量在85克及以上的为“B”型,已知该批电器有“A“型2件
(1)从该批电器中任选1件,求其为“B”型的概率;
(2)从重量在[80,85)的5件电器中,任选2件,求其中恰有1件为“A”型的概率.