题目内容

【题目】已知方程C:x2+y2﹣2x﹣4y+m=0,
(1)若方程C表示圆,求实数m的范围;
(2)在方程表示圆时,该圆与直线l:x+2y﹣4=0相交于M、N两点, ,求m的值;
(3)在(2)的条件下,定点A(1,0),P在线段MN上运动,求直线AP的斜率取值范围.

【答案】
(1)解:由D2+E2﹣4F>0,得4+16﹣4m>0,所以m<5
(2)解:∵(x﹣1)2+(y﹣2)2=5﹣m,

∴圆心(1,2)到直线l:x+2y﹣4=0的距离d=

又圆(x﹣1)2+(y﹣2)2=5﹣m的半径r=

|MN|=

所以 + =5﹣m,得m=4


(3)解:联立 ,解得M(0,2),N(

而点A(1,0),

∴kAM=﹣2,kAN=2

∴k≥2或k≤﹣2


【解析】(1)由D2+E2﹣4F>0,即可求得实数m的范围;(2)利用圆心(1,2)到直线l:x+2y﹣4=0的距离公式可求得圆心到直线距离d,利用圆的半径、弦长之半、d构成的直角三角形即可求得m的值;(3)将圆的方程与直线l的方程联立可求得M,N的坐标,利用kAM , kAN即可求得直线AP的斜率取值范围.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网