题目内容
【题目】在平面直角坐标系中,曲线
的参数方程为
(
为参数),在以
为极点,
轴的正半轴为极轴的极坐标系中,曲线
是圆心为
,半径为1的圆.
(1)求曲线,
的直角坐标方程;
(2)设为曲线
上的点,
为曲线
上的点,求
的取值范围.
【答案】(1)的直角坐标方程为
,
的直角坐标方程为
;(2)
的取值范围是
.
【解析】试题分析:(Ⅰ)消去参数可得C1的直角坐标方程,易得曲线C2的圆心的直角坐标为(0,3),可得C2的直角坐标方程;
(Ⅱ)设M(2cos,sin
),由三角函数和二次函数可得|MC2|的取值范围,结合圆的知识可得答案.
试题解析:
(1)消去参数可得
的直角坐标方程为
.
曲线的圆心的直角坐标为
,
∴的直角坐标方程为
.
(2)设,
则
.
∵,∴
,
.
根据题意可得,
,
即的取值范围是
.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】如今我们的互联网生活日益丰富,除了可以很方便地网购,网上叫外卖也开始成为不少人日常生活中不可或缺的一部分,为了解网络外卖在市的普及情况,
市某调查机构借助网络进行了关于网络外卖的问卷调查,并从参与调查的网民中抽取了200人进行抽样分析,得到表格(单位:人).
(1)根据表中数据,能否在犯错误的概率不超过0.15的前提下认为市使用网络外卖的情况与性别有关?
(2)①现从所抽取的女网民中利用分层抽样的方法再抽取5人,再从这5人中随机选出了3人赠送外卖优惠券,求选出的3人中至少有2人经常使用网络外卖的概率;
②将频率视为概率,从市所有参与调查的网民中随机抽取10人赠送礼品,记其中经常使用网络外卖的人数为
,求
的数学期望和方差.
参考公式: ,其中
.
参考数据:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
【题目】在对人们休闲方式的一次调查中,共调查120人,其中女性70人,男性50人.女性中有40人主要的休闲方式是看电视,另外30人主要的休闲方式是运动;男性中有20人主要的休闲方式是看电视,另外30人主要的休闲方式是运动.
(1)根据以上数据建立一个2×的列联表:
休闲方式 性别 | 看电视 | 运 动 | 总 计 |
女 性 | |||
男 性 | |||
总 计 |
(2)有多大的把握认为休闲方式与性别有关?
参考公式及数据:K2=
①当K2>2.706时,有90%的把握认为A、B有关联;
②当K2>3.841时,有95%的把握认为A、B有关联;
③当K2>6.635时,有99%的把握认为A、B有关联.