ÌâÄ¿ÄÚÈÝ
15£®°àÖ÷ÈÎΪÁ˶Ա¾°àѧÉúµÄ¿¼ÊԳɼ¨½øÐзÖÎö£¬¾ö¶¨´ÓÈ«°à25λŮͬѧ£¬15λÄÐͬѧÖÐËæ»ú³éÈ¡Ò»¸öÈÝÁ¿Îª8µÄÑù±¾½øÐзÖÎö£®£¨1£©Èç¹û°´ÐÔ±ð±ÈÀý·Ö²ã³éÑù£¬ÄС¢Å®Éú¸÷³éÈ¡¶àÉÙλ²Å·ûºÏ³éÑùÒªÇó£¿
£¨2£©Ëæ»ú³é³ö8룬ËûÃǵÄÎïÀí¡¢»¯Ñ§·ÖÊý¶ÔÓ¦ÈçÏÂ±í£º
ѧÉú±àºÅ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
ÎïÀí·ÖÊýx | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 |
»¯Ñ§·ÖÊýy | 72 | 77 | 80 | 84 | 88 | 90 | 93 | 95 |
²Î¿¼¹«Ê½£º$b=\frac{{\sum_{i=1}^n{£¨{x_i}-\overline x£©£¨{y_i}-\overline y£©}}}{{\sum_{i=1}^n{{{£¨{x_i}-\overline x£©}^2}}}}$£¬a=$\overline{y}$-b$\overline{x}$£» ²Î¿¼Êý¾Ý£º$\overline{x}$=77.5£¬$\overline{y}$=84.875£®
$\sum_{i=1}^{8}$£¨xi-x£©2=1050£¬$\sum_{i=1}^{8}$£¨yi-$\overline{y}$£©2¡Ö457£¬$\sum_{i=1}^{8}$£¨xi-$\overline{x}$£©£¨yi-$\overline{y}$£©¡Ö688£®
·ÖÎö £¨1£©ÏȼÆËã³ö³éÑù±È£¬½ø¶ø¿ÉµÃÄС¢Å®Éú¸÷³éÈ¡µÄÈËÊý£»
£¨2£©¸ù¾ÝÒÑÖªÖеÄÊý¾Ý£¬ÀûÓÃ×îС¶þ³Ë·¨£¬Çó³ö»Ø¹éϵÊý£¬¿ÉµÃ»Ø¹é·½³Ì£®
½â´ð ½â£º£¨1£©ÓÉÒÑÖªµÃ³éÑù±Èk=$\frac{8}{25+15}$=$\frac{8}{40}$£¬
ӦѡŮÉú25¡Á$\frac{8}{40}$=5룬ÄÐÉú15¡Á$\frac{8}{40}$=3λ ¡£¨3·Ö£©
£¨2£©ÎïÀí³É¼¨xΪºá×ø±ê£¬»¯Ñ§³É¼¨yΪ×Ý×ø±ê×÷É¢µãͼÈçÏ£º
´ÓÉ¢µãͼÖпÉÒÔ¿´³öÕâЩµã´óÖ·ֲ¼ÔÚÒ»ÌõÖ±Ï߸½½ü£®
¹Ê»¯Ñ§ÓëÎïÀí³É¼¨ÏßÐÔÏà¹Ø£®
ÉèyÓëxµÄÏßÐԻع鷽³ÌÊÇy=bx+a£¬
¸ù¾ÝËù¸øµÄÊý¾Ý£¬$\overline{x}$=77.5£¬$\overline{y}$=84.875£®
$\sum_{i=1}^{8}$£¨xi-x£©2=1050£¬$\sum_{i=1}^{8}$£¨xi-$\overline{x}$£©£¨yi-$\overline{y}$£©¡Ö688£®
¿ÉµÃ£º$\hat{b}$=$b=\frac{\sum _{i=1}^{8}£¨{x}_{i}-\overline{x}£©£¨{y}_{i}-\overline{y}£©}{\sum _{i=1}^{8}{£¨{x}_{i}-\overline{x}£©}^{2}}$¡Ö$\frac{688}{1050}$¡Ö0.66£¬¡£¨8·Ö£©
$\hat{a}$=84.875-0.66¡Á77.5¡Ö33.73£¬
ËùÒÔ£ºyÓëxµÄ»Ø¹é·½³ÌÊÇ $\hat{y}$¡Ö0.66x+33.73£®¡£¨10·Ö£©
µãÆÀ ±¾Ì⿼²éµÄ֪ʶµãÊÇ·Ö²ã³éÑù£¬»Ø¹é·½³Ì£¬ÊìÁ·ÕÆÎÕ×îС¶þ³Ë·¨µÄ¼ÆËã²½Ö裬Êǽâ´ðµÄ¹Ø¼ü£®
A£® | ³ä·Ö²»±ØÒª | B£® | ±ØÒª²»³ä·Ö | C£® | ³äÒª | D£® | ²»³ä·Ö²»±ØÒª |