题目内容
1955年,印度数学家卡普耶卡(D.R.Kaprekar)研究了对四位自然数的一种交换:任给出四位数,用的四个数字由大到小重新排列成一个四位数m,再减去它的反序数n(即将的四个数字由小到大排列,规定反序后若左边数字有0,则将0去掉运算,比如0001,计算时按1计算),得出数,然后继续对重复上述变换,得数,…,如此进行下去,卡普耶卡发现,无论是多大的四位数,只要四个数字不全相同,最多进行k次上述变换,就会出现变换前后相同的四位数t(这个数称为Kaprekar变换的核).通过研究10进制四位数2014可得Kaprekar变换的核为 .
6174
试题分析:把5 298代入计算,用5 298的四个数字由大到小重新排列成一个四位数9852.则9852-2589=7263,用7263的四个数字由大到小重新排列成一个四位数7632.则7632-2367=5265,用5265的四个数字由大到小重新排列成一个四位数6552.则6552-2556=3996,用3996的四个数字由大到小重新排列成一个四位数9963.则9963-3699=6264,用6264的四个数字由大到小重新排列成一个四位数6642.则6642-2466=4176,用4176的四个数字由大到小重新排列成一个四位数7641.则7641-1467=6174,用6174的四个数字由大到小重新排列成一个四位数7641.则7641-1467=6174…可知7次变换之后,四位数最后都会停在一个确定的数6174上.同样地,把4 852代入计算,可知7次变换之后,四位数最后都会停在一个确定的数6174上.故答案为:7,6174
练习册系列答案
相关题目