题目内容

4.△ABC的三个内角A,B,C所对的边分别是a,b,c,设$\overrightarrow p=(a+c,b)$,$\overrightarrow q=(b-a,c-a)$,若$\overrightarrow p$∥$\overrightarrow q$,则角C的大小为(  )
A.$\frac{2π}{3}$B.$\frac{π}{2}$C.$\frac{π}{6}$D.$\frac{π}{3}$

分析 先根据向量平行得到a2+b2-c2=ab,再根据余弦定理,即可求出角C.

解答 解:∵$\overrightarrow p=(a+c,b)$,$\overrightarrow q=(b-a,c-a)$,$\overrightarrow p$∥$\overrightarrow q$,
∴(a+c)(c-a)=b(b-a),
即a2+b2-c2=ab,
根据余弦定理,cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{1}{2}$,
∵△ABC的三个内角A,B,C,
∴C=$\frac{π}{3}$,
故选:D.

点评 本题考查了向量平行的坐标运算和余弦定理,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网