题目内容
【题目】如图,四面体中, 平面, , , , .
(Ⅰ)求四面体的四个面的面积中,最大的面积是多少?
(Ⅱ)证明:在线段上存在点,使得,并求的值.
【答案】(Ⅰ) ;(Ⅱ)证明见解析.
【解析】试题分析:(1)易得, , , 均为直角三角形,且的面积最大,进而求解即可;
(2)在平面ABC内,过点B作BN⊥AC,垂足为N.在平面PAC内,过点N作MN∥PA交PC于点M,连接BM,可证得AC⊥平面MBN,从而使得AC⊥BM,利用相似和平行求解即可.
试题解析:
(1)由题设AB=1,AC=2,BC=,
可得,所以,
由PA⊥平面ABC,BC、AB平面ABC,所以, ,
所以,
又由于PA∩AB=A,故BC⊥平面PAB,
PB平面PAB,所以,
所以, , , 均为直角三角形,且的面积最大,
.
(2)证明:在平面ABC内,过点B作BN⊥AC,垂足为N.在平面PAC内,过点N作MN∥PA交PC于点M,连接BM.
由PA⊥平面ABC知PA⊥AC,所以MN⊥AC.
由于BN∩MN=N,故AC⊥平面MBN.
又BM平面MBN,所以AC⊥BM.
因为与相似, ,
从而NC=AC-AN=.
由MN∥PA,得==.
练习册系列答案
相关题目