题目内容

8.(1)设Sn=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$,试比较Sn与曲线y=$\frac{1}{x}$,x轴及直线x=1和x=n+1围成的面积的大小.
(2)求证:1+$\frac{1}{\sqrt{{2}^{3}}}$+$\frac{1}{\sqrt{{3}^{3}}}$+…+$\frac{1}{\sqrt{{n}^{3}}}$<3.

分析 (1)利用定积分求出曲线y=$\frac{1}{x}$,x轴及直线x=1和x=n+1围成的面积,构造h(x)=ln(1+x)-x,证明ln(x+1)≤x,令x=$\frac{1}{n}$,利用叠加法,即可得出结论;
(2)构造数列an=1+$\frac{1}{\sqrt{{2}^{3}}}$+$\frac{1}{\sqrt{{3}^{3}}}$+…+$\frac{1}{\sqrt{{n}^{3}}}$-(3-$\frac{2}{\sqrt{n}}$),证明an+1<an,即可证明结论.

解答 (1)解:曲线y=$\frac{1}{x}$,x轴及直线x=1和x=n+1围成的面积S=${∫}_{1}^{n+1}\frac{1}{x}dx$=lnx${|}_{1}^{n+1}$=ln(n+1),
令h(x)=ln(1+x)-x,h′(x)=-$\frac{x}{1+x}$
h(x)在(-1,0)上单调递增,在(0,+∞)上单调递减
∴x>-1时,h(x)≤0⇒ln(x+1)≤x
令x=$\frac{1}{n}$,则$\frac{1}{n}$>ln(1+$\frac{1}{n}$)=ln(n+1)-lnn
∴Sn=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$>ln2-ln1+ln3-ln2+…+ln(n+1)-lnn=ln(n+1)=S;
(2)证明:构造数列an=1+$\frac{1}{\sqrt{{2}^{3}}}$+$\frac{1}{\sqrt{{3}^{3}}}$+…+$\frac{1}{\sqrt{{n}^{3}}}$-(3-$\frac{2}{\sqrt{n}}$),
则an+1=1+$\frac{1}{\sqrt{{2}^{3}}}$+$\frac{1}{\sqrt{{3}^{3}}}$+…+$\frac{1}{\sqrt{{n}^{3}}}$+$\frac{1}{\sqrt{(n+1)^{3}}}$-(3-$\frac{2}{\sqrt{n+1}}$),
∴an+1-an=$\frac{\sqrt{n}(2n+3)-\sqrt{n+1}(2n+2)}{\sqrt{n(n+1)^{3}}}$,
∵n(2n+3)2-(n+1)(2n+2)2<0,
∴an+1-an<0
∴an+1<an
∴an=1+$\frac{1}{\sqrt{{2}^{3}}}$+$\frac{1}{\sqrt{{3}^{3}}}$+…+$\frac{1}{\sqrt{{n}^{3}}}$-(3-$\frac{2}{\sqrt{n}}$)≤a1=0
∴1+$\frac{1}{\sqrt{{2}^{3}}}$+$\frac{1}{\sqrt{{3}^{3}}}$+…+$\frac{1}{\sqrt{{n}^{3}}}$≤3-$\frac{2}{\sqrt{n}}$<3

点评 本题考查利用叠定积分求面积,考查导数知识的运用,正确构造函数是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网