题目内容

(2013•淄博二模)等比数列{cn}满足cn+1+cn=10•4n-1(n∈N*),数列{an}的前n项和为Sn,且an=log2cn
(I)求an,Sn
(II)数列{bn}满足bn=
14Sn-1
Tn为数列{bn}
的前n项和,是否存在正整数m,k(1<m<k),使得T1,Tm,Tk成等比数列?若存在,求出所有m,k的值;若不存在,请说明理由.
分析:(Ⅰ)由已知令n=1,n=2可求,c1+c2,c2+c3,从而可求公比q,及c1,结合等比数列的通项公式可求cn,进而可求an,结合等差数列的求和公式可求sn
(Ⅱ)由(Ⅰ)知bn=
1
4n2-1
=
1
2
(
1
2n-1
-
1
2n+1
)
,利用裂项可求Tn,然后结合等比数列的性质可求满足条件的m,k
解答:解:(Ⅰ)由已知令n=1,n=2可得,c1+c2=10,c2+c3=40,所以公比q=4…(2分)
∴c1+c2=c1+4c1=10得c1=2
cn=2•4n-1=22n-1…(4分)
所以an=log222n-1=2n-1…(5分)
由等差数列的求和公式可得,Sn=
n(a 1+an)
2
=
n[1+(2n-1)]
2
=n2
…(6分)
(Ⅱ)由(Ⅰ)知bn=
1
4n2-1
=
1
2
(
1
2n-1
-
1
2n+1
)

于是Tn=
1
2
[(1-
1
3
)+(
1
3
-
1
5
)+…+(
1
2n-1
-
1
2n+1
)]=
n
2n+1
…(9分)
假设存在正整数m,k(1<m<k),使得T1,Tm,Tk成等比数列,则(
m
2m+1
)2=
1
3
×
k
2k+1

可得
3
k
=
-2m2+4m+1
m2
>0
,所以-2m2+4m+1>0
从而有,1-
6
2
<m<1+
6
2

由m∈N*,m>1,得m=2…(11分)
此时k=12.
当且仅当m=2,k=12时,T1,Tm,Tk成等比数列.…(12分)
点评:本题主要考查了等比数列的性质及等比数列的通项公式的简单应用,数列的裂项求和方法的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网