ÌâÄ¿ÄÚÈÝ
9£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1µÄÀëÐÄÂÊe=$\frac{1}{2}$£¬F£¨1£¬0£©£¬ÊÇÍÖÔ²CµÄÓÒ½¹µã£¬Èô²»¾¹ýÔµãOµÄÖ±Ïßl£ºy=kx+m£¨k£¾0£©ÓëÍÖÔ²CÏཻÓÚ²»Í¬µÄÁ½µãA¡¢B£¬¼ÇÖ±ÏßOA£¬OBµÄбÂÊ·Ö±ðΪk1£¬k2£¬ÇÒk1•k2=k2£®£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©ÇóÖ¤£ºÖ±ÏßABµÄбÂÊΪ¶¨Öµ£¬²¢Çó¡÷AOBÃæ»ýµÄ×î´óÖµ£®
·ÖÎö £¨¢ñ£©ÓÉÌõ¼þÀûÓÃÍÖÔ²µÄÐÔÖÊÇó³öa¡¢bµÄÖµ£¬¿ÉµÃÍÖÔ²CµÄ·½³Ì£®
£¨¢ò£©°ÑÖ±Ïßl£ºy=kx+m£¨k£¾0£©´úÈëÍÖÔ²µÄ·½³Ì£¬ÀûÓÃΤ´ï¶¨Àí¡¢µãµ½Ö±ÏߵľàÀ빫ʽ¡¢ÏÒ³¤¹«Ê½Çó³öS¡÷AOB=$\frac{1}{2}$•AB•d=$\frac{1}{2}$•$\sqrt{\frac{4£¨6{-m}^{2}£©{•m}^{2}}{3}}$¡Ü$\sqrt{3}$£¬´Ó¶øÖ¤µÃ½áÂÛ£®
½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒâ¿ÉµÃe=$\frac{c}{a}$=$\frac{1}{2}$£¬c=1£¬¡àa=2£¬b=$\sqrt{3}$£¬
¡àÍÖÔ²CµÄ·½³ÌΪ $\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1£®
£¨¢ò£©Ö¤Ã÷£ºÉèµãA£¨x1£¬y1£©¡¢B£¨x2£¬y2£©£¬°ÑÖ±Ïßl£ºy=kx+m£¨k£¾0£©´úÈëÍÖÔ² $\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1£¬
¿ÉµÃ £¨4k2+3£©x2+8kmx+4m2-12=0£®
ÓÉ¡÷=48£¨3-m2+4k2£©£¾0£¬x1+x2=-$\frac{8km}{{4k}^{2}+3}$£¬x1•x2=$\frac{{4m}^{2}-12}{{4k}^{2}+3}$£®
ÓÉk1•k2=$\frac{£¨{kx}_{1}+m£©•£¨{kx}_{2}+m£©}{{x}_{1}{•x}_{2}}$=k2+$\frac{km{£¨x}_{1}{+x}_{2}£©{+m}^{2}}{{x}_{1}{•x}_{2}}$=k2£®
¿ÉµÃkm£¨x1•x2 £©+m2=0£¬¼´ km•£¨-$\frac{8km}{{4k}^{2}+3}$ £©+m2=0£¬¼´ 3m2=4k2•m2£¬¡àk=$\frac{\sqrt{3}}{2}$£¬Îª¶¨Öµ£®
ÓÉÓÚAB=$\sqrt{{1+k}^{2}}$|x1-x2|=$\frac{\sqrt{7}}{2}$•$\sqrt{\frac{24-{4m}^{2}}{3}}$£¬µãOµ½Ö±ÏßABµÄ¾àÀëd=$\frac{|m|}{\sqrt{{1+k}^{2}}}$=$\frac{2|m|}{\sqrt{7}}$£¬
¹ÊS¡÷AOB=$\frac{1}{2}$•AB•d=$\frac{1}{2}$•$\sqrt{\frac{4£¨6{-m}^{2}£©{•m}^{2}}{3}}$¡Ü$\sqrt{3}$£¬¡à¡÷AOBÃæ»ýµÄ×î´óֵΪ$\sqrt{3}$£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÍÖÔ²µÄ¶¨Òå¡¢±ê×¼·½³Ì£¬ÒÔ¼°¼òµ¥ÐÔÖʵÄÓ¦Ó㬵㵽ֱÏߵľàÀ빫ʽ¡¢ÏÒ³¤¹«Ê½µÄÓ¦Óã¬ÊôÓÚÖеµÌ⣮
A£® | Èñ½ÇÈý½ÇÐÎ | B£® | Ö±½ÇÈý½ÇÐÎ | ||
C£® | ¶Û½ÇÈý½ÇÐÎ | D£® | Èñ½Ç»ò¶Û½ÇÈý½ÇÐÎ |
A£® | $\frac{\sqrt{2}}{2}$ | B£® | $\frac{1}{4}$ | C£® | $\frac{2-\sqrt{2}}{2}$ | D£® | 2-$\sqrt{2}$ |