题目内容
如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,点O是对角线AC与BD的交点,M是PD的中点,AB=2,∠BAD=60°.
(1)求证:OM∥平面PAB;
(2)求证:平面PBD⊥平面PAC;
(3)当四棱锥P-ABCD的体积等于时,求PB的长.
(1)求证:OM∥平面PAB;
(2)求证:平面PBD⊥平面PAC;
(3)当四棱锥P-ABCD的体积等于时,求PB的长.
(1)证明∵在△PBD中,O,M分别是BD,PD的中点,∴OM是△PBD的中位线,∴OM∥PB.
∵OM?平面PAB,PB?平面PAB,∴OM∥平面PAB.
(2)证明∵底面ABCD是菱形,∴BD⊥AC.∵PA⊥平面ABCD,BD?平面ABCD,∴PA⊥BD.又AC?平面PAC,PA?平面PAC,AC∩PA=A,∴BD⊥平面PAC.∵BD?平面PBD,∴平面PBD⊥平面PAC.
(3)解∵底面ABCD是菱形,AB=2,∠BAD=60°,
∴S菱形ABCD=2××AB×AD×sin 60°=2×2×=2.
∵四棱锥P-ABCD的高为PA,∴×2×PA=,解得PA=.又∵PA⊥平面ABCD,AB?平面ABCD,∴PA⊥AB.在Rt△PAB中,PB= ==.
∵OM?平面PAB,PB?平面PAB,∴OM∥平面PAB.
(2)证明∵底面ABCD是菱形,∴BD⊥AC.∵PA⊥平面ABCD,BD?平面ABCD,∴PA⊥BD.又AC?平面PAC,PA?平面PAC,AC∩PA=A,∴BD⊥平面PAC.∵BD?平面PBD,∴平面PBD⊥平面PAC.
(3)解∵底面ABCD是菱形,AB=2,∠BAD=60°,
∴S菱形ABCD=2××AB×AD×sin 60°=2×2×=2.
∵四棱锥P-ABCD的高为PA,∴×2×PA=,解得PA=.又∵PA⊥平面ABCD,AB?平面ABCD,∴PA⊥AB.在Rt△PAB中,PB= ==.
练习册系列答案
相关题目