题目内容
在△ABC中,a,b,c分别是A,B,C的对边,且满足(2a-c)cosB=bcosC.(I)求角B的大小;(II)若b=
7 |
分析:(1)先根据正弦定理用正弦表示出边,然后代入到已知条件中,再由两角和与差的公式整理可得到cosB的值,最后可得角B的值.
(2)根据余弦定理将b=
,a+c=4代入求出ac的值,再由三角形的面积公式可求得结果.
(2)根据余弦定理将b=
7 |
解答:解:(I)在△ABC中,由正弦定理得:
a=2RsinA,b=2RsinB,c=2RsinC代入(2a-c)cosB=bcosC整理得:
2sinAcosB=sinBcosC+sinCcosB
即:2sinAcosB=sin(B+C)=sinA,在三角形中,sinA>0,2cosB=1,
∵∠B是三角形的内角,∴B=60°.
(II)在△ABC中,由余弦定理得:
b2=a2+c2-2ac•cosB=(a+c)2-2ac-2ac•cosB
将b=
,a+c=4代入整理得ac=3
故S△ABC=
acsinB=
sin60°=
.
a=2RsinA,b=2RsinB,c=2RsinC代入(2a-c)cosB=bcosC整理得:
2sinAcosB=sinBcosC+sinCcosB
即:2sinAcosB=sin(B+C)=sinA,在三角形中,sinA>0,2cosB=1,
∵∠B是三角形的内角,∴B=60°.
(II)在△ABC中,由余弦定理得:
b2=a2+c2-2ac•cosB=(a+c)2-2ac-2ac•cosB
将b=
7 |
故S△ABC=
1 |
2 |
3 |
2 |
3
| ||
4 |
点评:本题主要考查正弦定理和余弦定理的应用,在求值时经常用到边和角的相互转化,这里一般是用正弦定理.
练习册系列答案
相关题目
在△ABC中,∠A、∠B、∠C所对的边长分别是a、b、c.满足2acosC+ccosA=b.则sinA+sinB的最大值是( )
A、
| ||||
B、1 | ||||
C、
| ||||
D、
|